分析 先由x>0時(shí),f(x)=2x,求出f(1),再根據(jù)f(x)是R上的奇函數(shù),得到答案.
解答 解:∵當(dāng)x>0時(shí),f(x)=2x,
∴f(1)=2,
∵f(x)是R上的奇函數(shù),
∴f(-2)=-f(2)=-2,
故答案為:-2.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),函數(shù)求值,難度不大,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,2) | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,2) | D. | ($\sqrt{2}$,$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | g(x)=x-1 | B. | $h(x)=\left\{{\begin{array}{l}{x-1,}&{x>1}\\{1-x,}&{x<1}\end{array}}\right.$ | ||
| C. | $s(x)={(\sqrt{x-1})^2}$ | D. | $t(x)=\sqrt{{{(x-1)}^2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-2,-1) | B. | (-1,0) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,0) | B. | (-1,0) | C. | (0,1) | D. | (0,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{32}$ | B. | $\frac{1}{64}$ | C. | $\frac{3}{64}$ | D. | $\frac{3}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| 空氣質(zhì)量指數(shù) | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
| 空氣質(zhì)量等級(jí) | 1級(jí)優(yōu) | 2級(jí)良 | 3級(jí)輕度污染 | 4級(jí)中度污染 | 5級(jí)重度污染 | 6級(jí)嚴(yán)重污染 |
| 空氣質(zhì)量指數(shù) | 頻數(shù) | 頻率 |
| (0,50] | x | a |
| (50,100] | y | b |
| (100,150] | 25 | 0.25 |
| (150,200] | 20 | 0.2 |
| (200,250] | 15 | 0.15 |
| (250,300] | 10 | 0.1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com