(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的極值;
(Ⅱ)對(duì)于曲線上的不同兩點(diǎn)
,如果存在曲線上的點(diǎn)
,且
,使得曲線在點(diǎn)
處的切線
∥
,則稱
為弦
的伴隨切線。特別地,當(dāng)
,
時(shí),又稱
為
的λ——伴隨切線。
(。┣笞C:曲線
的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有
伴隨切線?若存在,給出一條這樣的曲線
,并證明你的結(jié)論; 若不存在 ,說(shuō)明理由。
(Ⅰ)當(dāng)
時(shí),
沒(méi)有極值;
當(dāng)
時(shí),
的極大值為
,沒(méi)有極小值。(Ⅱ)見(jiàn)解析
【解析】(Ⅰ)
當(dāng)
,
,函數(shù)
在
內(nèi)是增函數(shù),
∴函數(shù)
沒(méi)有極值。 當(dāng)
時(shí),令
,得
。
當(dāng)
變化時(shí),
與
變化情況如下表:
|
|
|
|
|
|
|
+ |
0 |
- |
|
|
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
∴當(dāng)
時(shí),
取得極大值
。
綜上,當(dāng)
時(shí),
沒(méi)有極值;
當(dāng)
時(shí),
的極大值為
,沒(méi)有極小值。
(Ⅱ)(。┰O(shè)
是曲線
上的任意兩點(diǎn),要證明
有伴隨切線,只需證明存在點(diǎn)
,使得
,且點(diǎn)
不在
上。
∵
,即證存在
,使得
,即
成立,且點(diǎn)
不在
上。 …………………8分
以下證明方程
在
內(nèi)有解!
記
,則
。
令
,
∴
,
∴
在
內(nèi)是減函數(shù),∴
。
取
,則
,即
。……9分
同理可證
!
。
∴函數(shù)
在
內(nèi)有零點(diǎn)。
即方程
在
內(nèi)有解
。又對(duì)于函數(shù)
取
,則![]()
可知
,即點(diǎn)Q不在
上。
是增函數(shù),∴
的零點(diǎn)是唯一的,
即方程
在
內(nèi)有唯一解。
綜上,曲線
上任意一條弦均有伴隨切線,并且伴隨切線是唯一的。
(ⅱ)取曲線C:
,則曲線
的任意一條弦均有
伴隨切線。
證明如下:
設(shè)
是曲線C上任意兩點(diǎn)
,
則
,
又
,
即曲線C:
的任意一條弦均有
伴隨切線。
注:只要考生給出一條滿足條件的曲線,并給出正確證明,均給滿分。若只給曲
線,沒(méi)有給出正確的證明,請(qǐng)酌情給分。
解法二:
(Ⅰ)同解法一。
(Ⅱ)(。┰O(shè)
是曲線
上的任意兩點(diǎn),要證明
有伴隨切線,只需證明存在點(diǎn)
,使得
,且點(diǎn)
不在
上。 ∵
,即證存在
,使得
,
即
成立,且點(diǎn)
不在
上。 …………… 8分
以下證明方程
在
內(nèi)有解。
設(shè)
!
則
。
記
,
∴
,
∴
在
內(nèi)是增函數(shù),
∴
。 同理
。
。
∴方程
在
內(nèi)有解
。 又對(duì)于函數(shù)
,
∵
,
,
可知
,即點(diǎn)Q不在
上。
又
在
內(nèi)是增函數(shù),
∴方程
在
內(nèi)有唯一解。
綜上,曲線
上任意一條弦均有伴隨切線,并且伴隨切線是唯一的。
(ⅱ)同解法一。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(。┤舨坏仁
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(ⅱ)若
是兩個(gè)不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知
、
分別為橢圓
:
的
上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),
點(diǎn)
是
與
在第二象限的交點(diǎn),且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)P(1,3)和圓
:
,過(guò)點(diǎn)P的動(dòng)直線
與圓
相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:
,
(
且
)。求證:點(diǎn)Q總在某定直線上。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓
的左、右焦點(diǎn)分別為
、
,過(guò)
的直線
與橢圓相交于A、B兩點(diǎn)。
(Ⅰ)若
,且
,求橢圓的離心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說(shuō)明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com