【題目】如圖,四邊形
的兩條對(duì)角線
相交于
,現(xiàn)用五種顏色(其中一種為紅色)對(duì)圖中四個(gè)三角形
進(jìn)行染色,且每個(gè)三角形用一種顏色圖染.
(1)若必須使用紅色,求四個(gè)三角形
中有且只有一組相鄰三角形同色的染色方法的種數(shù);
(2)若不使用紅色,求四個(gè)三角形
中所有相鄰三角形都不同色的染色方法的種數(shù).
![]()
【答案】(1)144(2)
種
【解析】試題分析:(1)分兩種情況:
同時(shí)染紅色,
同時(shí)染的不是紅色,然后根據(jù)分類計(jì)數(shù)加法原理可得結(jié)果;(2)分三種情況:一共使用了四種顏色,使用了三種顏色,使用了兩種顏色,然后根據(jù)分類計(jì)數(shù)加法原理可得結(jié)果.
試題題解析:(1)同色的相鄰三角形共有
種,不妨假設(shè)為
,
①若
同時(shí)染紅色,則另外兩個(gè)三角形共有
種染色方法,因此這種情況共有
種染色方法;
②若
同時(shí)染的不是紅色,則它們的染色有
種,另外兩個(gè)三角形一個(gè)必須染紅色,所以這兩個(gè)三角形共有
,因此這種情況共有
種染色方法.
綜上可知有且只有一組相鄰三角形同色的染色方法的種數(shù)為
種;
(2)因?yàn)椴挥眉t色,則只有四種顏色.
若一共使用了四種顏色,則共有
種染色方法;若只使用了三種顏色,則必有一種顏色使用了兩次,且染在對(duì)頂?shù)膮^(qū)域,所以一共有
種染色方法;若只使用了兩種顏色,則兩種顏色都使用了兩次,且各自染在一組對(duì)頂區(qū)域,所以共有
種染色方法.綜上可知所有相鄰三角形都不同色的染色方法的種數(shù)為
種.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年利潤(rùn)
(單位:萬(wàn)元)的影響,對(duì)近5年的宣傳費(fèi)
和年利潤(rùn)
(
)進(jìn)行了統(tǒng)計(jì),列出了下表:
| 2 | 4 | 7 | 17 | 30 |
| 1 | 2 | 3 | 4 | 5 |
員工小王和小李分別提供了不同的方案.
(1)小王準(zhǔn)備用線性回歸模型擬合
與
的關(guān)系,請(qǐng)你幫助建立
關(guān)于
的線性回歸方程;(系數(shù)精確到0.01)
(2)小李決定選擇對(duì)數(shù)回歸模型擬合
與
的關(guān)系,得到了回歸方程:
,并提供了相關(guān)指數(shù)
.請(qǐng)用相關(guān)指數(shù)說(shuō)明哪個(gè)模型更合適,并預(yù)測(cè)年宣傳費(fèi)為4萬(wàn)元的年利潤(rùn).(精確到0.01)(小王也提供了他的分析數(shù)據(jù)
)
參考公式:相關(guān)指數(shù)![]()
回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
,
.參考數(shù)據(jù):
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品每件進(jìn)價(jià)9元,售價(jià)20元,每天可賣出69件.若售價(jià)降低,銷售量可以增加,且售價(jià)降低
元時(shí),每天多賣出的件數(shù)與
成正比.已知商品售價(jià)降低3元時(shí),一天可多賣出36件.
(Ⅰ)試將該商品一天的銷售利潤(rùn)表示成
的函數(shù);(Ⅱ)該商品售價(jià)為多少元時(shí)一天的銷售利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在
處的切線方程;
(2)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(3)若
,在
上存在一點(diǎn)
,使得
成立,
求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
![]()
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
+
=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2=
(a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明準(zhǔn)備利用暑假時(shí)間去旅游,媽媽為小明提供四個(gè)景點(diǎn),九寨溝、泰山、長(zhǎng)白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識(shí)制定一個(gè)方案來(lái)決定去哪個(gè)景點(diǎn):(如圖)曲線
和直線
交于點(diǎn)
.以
為起點(diǎn),再?gòu)那
上任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為
.若
去九寨溝;若
去泰山;若
去長(zhǎng)白山;
去武夷山.
![]()
(1)若從
這六個(gè)點(diǎn)中任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,分別求小明去九寨溝的概率和不去泰山的概率;
(2)按上述方案,小明在曲線
上取點(diǎn)
作為向量的終點(diǎn),則小明決定去武夷山.點(diǎn)
在曲線
上運(yùn)動(dòng),若點(diǎn)
的坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-ax+ln(x+1)(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;
(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數(shù)列{cn}是單調(diào)遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的
,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是
或
作品獲得一等獎(jiǎng)”;
乙說(shuō):“
作品獲得一等獎(jiǎng)”;
丙說(shuō):“
,
兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是
作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com