【題目】如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉(zhuǎn)軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.
分別為
的中點(diǎn),
為弧
的中點(diǎn),
為弧
的中點(diǎn).
![]()
(1)求直線
與底面
所成的角的大。
(2)求異面直線
與
所成的角的大。ńY(jié)果用反三角函數(shù)值表示).
【答案】(1)
(2)![]()
【解析】
(1)連結(jié)
,利用線面角的定義找到直線
與底面
所成的角,利用銳角三角函數(shù)中正切的定義求出直線
與底面
所成的角正切值,最后利用反正切函數(shù)表示即可;
(2)連結(jié)
、
、
,則
,所以
或其補(bǔ)角為異面直線
與
所成的角,利用余弦定理可以求出
的余弦值,最后求出異面直線
與
所成的角的大小.
解:(1)連結(jié)
、因?yàn)?/span>
分別為
的中點(diǎn),所以
底面
,所以
是直線
與底面
所成的角,在
中,
;
(2)連結(jié)
、
、
,則
,
所以
或其補(bǔ)角為異面直線
與
所成的角.
在
中,
,
,
因?yàn)?/span>
,
所以
.
所以,異面直線
與
所成的角的大小為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在五棱錐
中,側(cè)面
底面
,
是邊長(zhǎng)為2的正三角形,四邊形
為正方形,
,且
,
是
的重心,
是正方形
的中心.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)平臺(tái)從購(gòu)買該平臺(tái)某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時(shí)數(shù) |
|
|
|
|
|
|
|
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購(gòu)買該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對(duì)購(gòu)買該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求這2人購(gòu)買的學(xué)時(shí)數(shù)都不低于15的概率.
(3)將購(gòu)買該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛好該課程者”.請(qǐng)根據(jù)已知條件完成以下
列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:
,![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在
到
之間,將測(cè)量結(jié)果按如下方式分成六組:第1組
,第2組
,…,第6組
,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
![]()
(1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;
(2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);
(3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年“雙十一”全網(wǎng)銷售額達(dá)
億元,相當(dāng)于全國(guó)人均消費(fèi)
元,同比增長(zhǎng)
,監(jiān)測(cè)參與“雙十一”狂歡大促銷的
家電商平臺(tái)有天貓、京東、蘇寧易購(gòu)、網(wǎng)易考拉在內(nèi)的綜合性平臺(tái),有拼多多等社交電商平臺(tái),有敦煌網(wǎng)、速賣通等出口電商平臺(tái).某大學(xué)學(xué)生社團(tuán)在本校
名大一學(xué)生中采用男女分層抽樣,分別隨機(jī)調(diào)查了若干個(gè)男生和
個(gè)女生的網(wǎng)購(gòu)消費(fèi)情況,制作出男生的頻率分布表、直方圖(部分)和女生的莖葉圖如下:
![]()
男生直方圖
分組(百元) | 男生人數(shù) | 頻率 |
|
|
|
|
|
|
|
|
|
|
| |
|
| |
|
|
|
|
|
|
|
|
|
合計(jì) |
|
![]()
女生莖葉圖
(1)請(qǐng)完成頻率分布表的三個(gè)空格,并估計(jì)該校男生網(wǎng)購(gòu)金額的中位數(shù)(單位:元,精確到個(gè)位).
(2)若網(wǎng)購(gòu)為全國(guó)人均消費(fèi)的三倍以上稱為“剁手黨”,估計(jì)該校大一學(xué)生中的“剁手黨”人數(shù)為多少?從抽樣數(shù)據(jù)中網(wǎng)購(gòu)不足
元的同學(xué)中隨機(jī)抽取
人發(fā)放紀(jì)念品,則
人都是女生的概率為多少?
(3)用頻率估計(jì)概率,從全市所有高校大一學(xué)生中隨機(jī)調(diào)查
人,求其中“剁手黨”人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)不同身高
的未成年男性的體重平均值
如下表:
身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
體重y(kg) | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 |
已知
與
之間存在很強(qiáng)的線性相關(guān)性,
(Ⅰ)據(jù)此建立
與
之間的回歸方程;
(Ⅱ)若體重超過相同身高男性體重平均值的
倍為偏胖,低于
倍為偏瘦,那么這個(gè)地區(qū)一名身高
體重為
的在校男生的體重是否正常?
參考數(shù)據(jù):![]()
附:對(duì)于一組數(shù)據(jù)
,其回歸直線
中的斜率和截距的最小二乘估計(jì)分別為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面
為直角梯形,
,且
,
,
,平面
底面
,
為
的中點(diǎn),
為等邊三角形,
是棱
上的一點(diǎn),設(shè)
(
與
不重合).
![]()
(1)若
平面
,求
的值;
(2)當(dāng)
時(shí),求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩鐵路線垂直相交于站
,若已知
千米,甲火車從
站出發(fā),沿
方向以
千米
小時(shí)的速度行駛,同時(shí)乙火車從
站出發(fā),沿
方向,以
千米
小時(shí)的速度行駛,至
站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長(zhǎng)忽略不計(jì)).
![]()
(1)求甲、乙兩車的最近距離(用含
的式子表示);
(2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時(shí)所用時(shí)間為
小時(shí),問
為何值時(shí)
最大?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com