【題目】已知點(diǎn)
,且
,滿足條件的
點(diǎn)的軌跡為曲線
.
(1)求曲線
的方程;
(2)是否存在過點(diǎn)
的直線
,直線
與曲線
相交于
兩點(diǎn),直線
與
軸分別交于
兩點(diǎn),使得
?若存在,求出直線
的方程;若不存在,請(qǐng)說明理由.
【答案】(1)
(2)存在,
或
.
【解析】
(1)由
得
看成
到兩定點(diǎn)
的和為定值,滿足橢圓定義,用定義可解曲線
的方程.
(2)先討論斜率不存在情況是否符合題意,當(dāng)直線
的斜率存在時(shí),設(shè)直線點(diǎn)斜式方程
,由
,可得
,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于
的一元二次方程求解.
解:
設(shè)
,
由
,
,
可得
,即為
,
由
,可得
的軌跡是以
為焦點(diǎn),且
的橢圓,
由
,可得
,可得曲線
的方程為
;
假設(shè)存在過點(diǎn)
的直線l符合題意.
當(dāng)直線
的斜率不存在,設(shè)方程為
,可得
為短軸的兩個(gè)端點(diǎn),
不成立;
當(dāng)直線
的斜率存在時(shí),設(shè)方程為
,![]()
由
,可得
,即
,
可得
,化為
,
由
可得
,
由
在橢圓內(nèi),可得直線
與橢圓相交,
,
則![]()
化為
,即為
,解得
,
所以存在直線
符合題意,且方程為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
的參數(shù)方程為
(
為參數(shù)).以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的普通方程和
的直角坐標(biāo)方程;
(2)若過點(diǎn)
的直線
與
交于
,
兩點(diǎn),與
交于
,
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F1的直線與C交于A,B兩點(diǎn).△ABF2的周長為
,且橢圓的離心率為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PB與y=2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱
蔬菜),購入價(jià)為200元/袋,并以300元/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購進(jìn)的
蔬菜沒有售完,則批發(fā)商將沒售完的
蔬菜以150元/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把
蔬菜低價(jià)處理完,且當(dāng)天不再購進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計(jì)了100天
蔬菜在每天的前8小時(shí)內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.
![]()
(1)若某天該蔬菜批發(fā)商共購入6袋
蔬菜,有4袋
蔬菜在前8小時(shí)內(nèi)分別被4名顧客購買,剩下2袋在8小時(shí)后被另2名顧客購買.現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150元/袋的價(jià)格購買的概率是多少?
(2)以上述樣本數(shù)據(jù)作為決策的依據(jù).
(i)若今年
蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅(jiān)持每天購進(jìn)6袋
蔬菜,試估計(jì)該蔬菜批發(fā)商經(jīng)銷
蔬菜的總盈利值;
(ii)若明年該蔬菜批發(fā)商每天購進(jìn)
蔬菜的袋數(shù)相同,試幫其設(shè)計(jì)明年的
蔬菜的進(jìn)貨方案,使其所獲取的平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解該企業(yè)工人組裝某產(chǎn)品所用時(shí)間,對(duì)每個(gè)工人組裝一個(gè)該產(chǎn)品的用時(shí)作了記錄,得到大量統(tǒng)計(jì)數(shù)據(jù).從這些統(tǒng)計(jì)數(shù)據(jù)中隨機(jī)抽取了
個(gè)數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時(shí)不超過
(分鐘),則稱這個(gè)工人為優(yōu)秀員工.
![]()
(1)求這個(gè)樣本數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)從樣本數(shù)據(jù)用時(shí)不超過
分鐘的工人中隨機(jī)抽取
個(gè),求至少有一個(gè)工人是優(yōu)秀員工的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
![]()
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個(gè)成績,記事件
為“其中2個(gè)成績分別屬于不同的同學(xué)”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體
的棱長為2,
平面
.平面
截此正方體所得的截面有以下四個(gè)結(jié)論:
①截面形狀可能是正三角形②截面的形狀可能是正方形
③截面形狀可能是正五邊形④截面面積最大值為![]()
則正確結(jié)論的編號(hào)是( )
A.①④B.①③C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為常數(shù).
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
(
為自然對(duì)數(shù)的底數(shù)),
時(shí),若方程
有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com