某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
(3)是否存在v,使得小艇以v海里/時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.
(1) 小艇以30
海里/時的速度航行,相遇時小艇的航行距離最小
(2) 10
海里/時 (3)存在,v的取值范圍是(15
,30)
【解析】
解:(1)法一 設(shè)相遇時小艇的航行距離為s海里,則
s=![]()
=![]()
=
.
故當(dāng)t=
時,smin=10
,v=
=30
.
即小艇以30
海里/時的速度航行,相遇時小艇的航行距離最小.
法二 若相遇時小艇的航行距離最小,又輪船沿正東方向勻速行駛,則小艇航行方向為正北方向.
如圖所示,設(shè)小艇與輪船在C處相遇.
![]()
在Rt△OAC中,OC=20cos 30°=10
,
AC=20sin 30°=10.
又AC=30t,OC=vt,
此時,輪船航行時間t=
=
,v=
=30
.
即小艇以30
海里/時的速度航行,相遇時小艇的航行距離最小.
(2)如圖所示,設(shè)小艇與輪船在B處相遇.
![]()
由題意可得
(vt)2=202+(30t)2-2×20×30t×cos(90°-30°),
化簡得v2=
-
+900
=400(
-
)2+675.
由于0<t≤
,即
≥2,
所以當(dāng)
=2時,v取得最小值10
,
即小艇航行速度的最小值為10
海里/時.
(3)由(2)知v2=
-
+900,
設(shè)
=u(u>0),于是400u2-600u+900-v2=0.(*)
小艇總能有兩種不同的航行方向與輪船相遇,等價于方程(*)應(yīng)有兩個不等正根,即
![]()
解得15
<v<30.
所以v的取值范圍是(15
,30).
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛. 假設(shè)該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
![]()
(Ⅰ)若希望相遇時小艇的航行距離最小,則小艇航行時間應(yīng)為多少小時?
(Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市高三第五次質(zhì)量檢查數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的
處,并正以30海里/小時的航行速度沿正東方向勻速行駛。假設(shè)該小艇沿直線方向以
海里/小時的航行速度勻速行駛,經(jīng)過
小時與輪船相遇。
(Ⅰ)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com