【題目】設(shè)
為實(shí)數(shù),函數(shù)
.
(1)若函數(shù)
是偶函數(shù),求實(shí)數(shù)
的值;
(2)若
,求函數(shù)
的最小值;
(3)對于函數(shù)
,在定義域內(nèi)給定區(qū)間
,如果存在
,滿足
,則稱函數(shù)
是區(qū)間
上的“平均值函數(shù)”,
是它的一個“均值點(diǎn)”.如函數(shù)
是
上的平均值函數(shù),
就是它的均值點(diǎn).現(xiàn)有函數(shù)
是區(qū)間
上的平均值函數(shù),求實(shí)數(shù)
的取值范圍.
【答案】(1)
;(2)
;(3)![]()
【解析】
試題(1)考察偶函數(shù)的定義,利用
通過整理即可得到;(2)此函數(shù)是一個含有絕對值的函數(shù),解決此類問題的基本方法是寫成分段函數(shù)的形式,
,要求函數(shù)的最小值,要分別在每一段上求出最小值,取這兩段中的最小值;(3)此問題是一個新概念問題,這種類型都可轉(zhuǎn)化為我們學(xué)過的問題,此題定義了一個均值點(diǎn)的概念,我們通過概念可把題目轉(zhuǎn)化為“存在
,使得
”從而轉(zhuǎn)化為一元二次方程有解問題.
試題解析:解:(1)
是偶函數(shù),
在
上恒成立,
即
,所以
得![]()
![]()
![]()
(2)當(dāng)
時,![]()
所以
在
上的最小值為
,
在
上的的最小值為f(
)=
,
因?yàn)?/span>
<5,所以函數(shù)
的最小值為
.
(3)因?yàn)楹瘮?shù)
是區(qū)間
上的平均值函數(shù),
所以存在
,使![]()
而
,存在
,使得![]()
即關(guān)于
的方程
在
內(nèi)有解;
由
得![]()
解得
所以
即![]()
故
的取值范圍是![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中
的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分,眾數(shù),中位數(shù);
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(
)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(
)之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
| 1:1 | 2:1 | 3:4 | 4:5 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用水清洗一份蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農(nóng)藥量的
,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用
單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
.
(1)求
的值,并解釋其實(shí)際意義;
(2)現(xiàn)有
單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是函數(shù)
的零點(diǎn),
.
(1)求實(shí)數(shù)
的值;
(2)若不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)若方程
有三個不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(
版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為
分,分值高者為優(yōu),低者為差),則下面敘述不正確的是( )
![]()
A.甲的數(shù)據(jù)分析素養(yǎng)低于乙
B.乙的六大素養(yǎng)中邏輯推理最差
C.甲的數(shù)學(xué)建模素養(yǎng)差于邏輯推理素養(yǎng)
D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2
sin(3ωx
),其中ω>0.
(1)若f(x+θ)是最小周期為2π的偶函數(shù),求ω和θ的值;
(2)若f(x)在(0,
]上是增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年
月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID-19),簡稱“新冠肺炎”,下圖是
年
月
日至
月
日累計確診人數(shù)隨時間變化的散點(diǎn)圖.
![]()
為了預(yù)測在未采取強(qiáng)力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)
與時間變量
的兩個回歸模型,根據(jù)
月
日至
月
日的數(shù)據(jù)(時間變量
的值依次
,
,…,
)建立模型
和
.
參考數(shù)據(jù):其中
,
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根據(jù)散點(diǎn)圖判斷,
和
哪一個適宜作為累計確診人數(shù)
與時間變量
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)以下是
月
日至
月
日累計確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:
時間 |
|
|
|
|
|
累計確診人數(shù)的真實(shí)數(shù)據(jù) |
|
|
|
|
|
(i)當(dāng)
月
日至
月
日這
天的誤差(模型預(yù)測數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對值與真實(shí)數(shù)據(jù)的比值)都小于
則認(rèn)為模型可靠,請判斷(2)的回歸方程是否可靠?
(ii)
年
月
日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國人民共同取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施
天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請判斷預(yù)防措施是否有效?并說明理由.
附:對于一組數(shù)據(jù)
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時,討論函數(shù)
與
的圖象的交點(diǎn)個數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com