欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
數列{an}中,數列{an•an+1}是公比為q(q>0)的等比數列.
(Ⅰ)求使anan+1+an+1an+2>an+2an+3成立的q的取值范圍;
(Ⅱ)求數列{an}的前2n項的和S2n
分析:( I)由題意可知,an+1an+2=anan+1q,an+2an+3=anan+1q2,結合已知anan+1+an+1an+2>an+2an+3,代入等比數列的通項,可求q的范圍
( II)由數列{an•an+1}是公比為q的等比數列,得,
an+1an+2
anan+1
=q⇒
an+2
an
=q
,則數列{an}的所有奇數項成等比數列,所有偶數項成等比數列,且公比都是q,結合等比數列的求和公式,需要對q=1和q≠1兩種情況討論,分別利用分組求和可求
解答:解:( I)∵數列{an•an+1}是公比為q的等比數列,
∴an+1an+2=anan+1q,an+2an+3=anan+1q2
由anan+1+an+1an+2>an+2an+3得anan+1+anan+1q>anan+1q2
∴1+q>q2,即q2-q-1<0(q>0),
解得0<q<
1+
5
2
.(4分)
( II)由數列{an•an+1}是公比為q的等比數列,得
an+1an+2
anan+1
=q⇒
an+2
an
=q

這表明數列{an}的所有奇數項成等比數列,所有偶數項成等比數列,且公比都是q,(8分)
又a1=1,a2=2,
∴當q≠1時,S2n=a1+a2+a3+a4+…+a2n-1+a2n
=(a1+a3+…+a2n-1)+(a2+a4+a6+…+a2n
=
a1(1-qn)
1-q
+
a2(1-qn)
1-q
=
3(1-qn)
1-q
,(10分)
當q=1時,S2n=a1+a2+a3+a4+…+a2n-1+a2n
=(a1+a3+…+a2n-1)+(a2+a4+a6+…+a2n
=(1+1+1+…+1)+(2+2+2+…+2)=3n…(12分)
點評:本題主要考查了等比數列的通項公式及求和公式的應用及分組求和方法的應用,而利用等比數列的求和公式進行求解時,一定要注意對公比q是否為1的考慮
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

4、給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續(xù)的k項和該數列中另一個連續(xù)的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在各項為正的數列{an}中,數列的前n項和Sn滿足Sn=
1
2
(an+
1
an
)

(1)求a1,a2,a3
(2)由(1)結果猜想出數列{an}的通項公式(不用證明);
(3)求Sn

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續(xù)的k項和該數列中另一個連續(xù)的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年高考模擬數學專題:壓軸大題(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續(xù)的k項和該數列中另一個連續(xù)的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學專項復習:創(chuàng)新題(2)(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續(xù)的k項和該數列中另一個連續(xù)的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

同步練習冊答案