【題目】如圖所示,已知長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點(diǎn),且BE⊥B1C. ![]()
(1)求CE的長(zhǎng);
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.
【答案】
(1)解:如圖所示,以D為原點(diǎn),DA、DC、DD1所在直線分別為x、y、z軸建立空間直角坐標(biāo)系D﹣xyz.
∴D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),
B1(2,2,4),C1(0,2,4),D1(0,0,4).
設(shè)E點(diǎn)坐標(biāo)為(0,2,t),則
=(﹣2,0,t),
=(﹣2,0,﹣4).
∵BE⊥B1C,∴
=4+0﹣4t=0.
∴t=1,故CE=1.
![]()
(2)證明:由(1)得,E(0,2,1),
=(﹣2,0,1),
又
=(﹣2,2,﹣4),
=(2,2,0)
∴
=4+0﹣4=0,且
=﹣4+4+0=0.
∴
⊥
且
⊥
,即A1C⊥DB,A1C⊥BE,
又∵DB∩BE=B,∴A1C⊥平面BDE,即A1C⊥平面BED
(3)解:由(2)知
=(﹣2,2,﹣4)是平面BDE的一個(gè)法向量.
又
=(0,2,﹣4),
∴cos<
,
>=
=
.
∴A1B與平面BDE夾角的正弦值為 ![]()
【解析】(1)建立空間直角坐標(biāo)系,求出
、
,利用
=0,即可求得結(jié)論;(2)證明
⊥
且
⊥
,可得A1C⊥DB,A1C⊥BE,從而可得A1C⊥平面BED;(3)由(2)知
=(﹣2,2,﹣4)是平面BDE的一個(gè)法向量,利用向量的夾角公式,即可求A1B與平面BDE夾角的正弦值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,2]
B.![]()
C.![]()
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
是自然對(duì)數(shù)的底數(shù)),![]()
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)
,其中
為
的導(dǎo)函數(shù),證明:對(duì)任意
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)判斷f(x)的奇偶性;
(2)當(dāng)x∈[﹣1,1]時(shí),f(x)≥m恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(I)若
,求函數(shù)
的單調(diào)區(qū)間.
(II)若函數(shù)
在區(qū)間
上是減函數(shù),求實(shí)數(shù)
的取值范圍.
(III)過(guò)坐標(biāo)原點(diǎn)
作曲線
的切線,求切線的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意a、b∈R,當(dāng)a+b≠0時(shí),都有
.
(1)若a>b,試比較f(a)與f(b)的大小關(guān)系;
(2)若f(9x﹣23x)+f(29x﹣k)>0對(duì)任意x∈[0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個(gè)函數(shù):
①y=sinx;
②y=2x;
③y=
;
④f(x)=lnx,
則其中“Ω函數(shù)”共有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2015)的值為( ) ![]()
A.0
B.3 ![]()
C.6 ![]()
D.﹣ ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在
市的普及情況,
市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到下表:(單位:人)
![]()
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為
市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從
市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為
,求
的數(shù)學(xué)期望和方差.
參考公式:
,其中
.
參考數(shù)據(jù):
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com