| A. | ( 。 | B. | (0,$\frac{1}{2}$) | C. | (0,$\frac{1}{4}$) | D. | (0,$\frac{1}{3}$) |
分析 由函數(shù)的性質(zhì)可作出函數(shù)的圖象,y=kx+k-1表示過定點(-1,-1)的直線,數(shù)形結(jié)合可得.
解答
解:∵f(x)是以2為周期的偶函數(shù),
當x∈[0,1]時,f(x)=-x,
由此作出函數(shù)f(x)在區(qū)間[-1,3]上的圖象,
又y=kx+k-1表示過定點(-1,-1)的直線,
數(shù)形結(jié)合可得當直線介于l1和l2之間時,
滿足方程有四個不同的實數(shù)根,
∴k∈(0,$\frac{1}{3}$),
故選:D.
點評 本題考查函數(shù)的周期性和奇偶性,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -3 | B. | -2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$-$\frac{3}{2}$i | B. | -$\frac{1}{2}$-$\frac{3}{2}$i | C. | $\frac{1}{2}$+$\frac{3}{2}$i | D. | -$\frac{1}{2}$+$\frac{3}{2}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | x${\;}^{2}+\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{16}-\frac{{y}^{2}}{48}$=1 | C. | $\frac{{x}^{2}}{2}-\frac{{y}^{2}}{6}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com