【題目】如圖,在平面直角坐標系xOy中,橢圓
的左焦點為
,右頂點為
,上頂點為
.
(1)已知橢圓的離心率為
,線段
中點的橫坐標為
,求橢圓的標準方程;
(2)已知△
外接圓的圓心在直線
上,求橢圓的離心率
的值.
![]()
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:
的一個頂點為
,且過拋物線
的焦點F.
(1)求橢圓C的方程及離心率;
(2)設點Q是橢圓C上一動點,試問直線
上是否存在點P,使得四邊形PFQB是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
為圓
上一點,
軸于點
,
軸于點
,點
滿足
(
為坐標原點),點
的軌跡為曲線
.
(Ⅰ)求
的方程;
(Ⅱ)斜率為
的直線
交曲線
于不同的兩點
、
,是否存在定點
,使得直線
、
的斜率之和恒為0.若存在,則求出點
的坐標;若不存在,則請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將正整數(shù)1,2,3,
,n,
排成數(shù)表如表所示,即第一行3個數(shù),第二行6個數(shù),且后一行比前一行多3個數(shù),若第i行,第j列的數(shù)可用
表示,則100可表示為______.
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 |
| |
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10/p> | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(
,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣教育局為了檢查本縣甲、乙兩所學校的學生對安全知識的學習情況,在這兩所學校進行了安全知識測試,隨機在這兩所學校各抽取20名學生的考試成績作為樣本,成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計結(jié)果如下圖:
![]()
甲校 乙校
(1)從乙校成績優(yōu)秀的學生中任選兩名,求這兩名學生的成績恰有一個落在
內(nèi)的概率;
(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯的概率不超過0.1的前提下認為學生的成績與兩所學校的選擇有關(guān)。
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
總計 |
![]()
參考數(shù)據(jù) | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定公差大于0的有限正整數(shù)等差數(shù)列
,其中,
為質(zhì)數(shù).甲、乙兩人輪流從
個石子中取石子,規(guī)定:每次每人可取
個石子,取走的石子不再放回,甲先取,取到最后一個石子者為勝.試問:誰有必勝策略?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
.
(Ⅰ)求函數(shù)
的極值;
(Ⅱ)當
時,證明:對一切的
,都有
恒成立;
(Ⅲ)當
時,函數(shù)
,
有最小值,記
的最小值為
,證明:
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com