【題目】為維護(hù)交通秩序,防范電動(dòng)自行車被盜,天津市公安局決定,開展二輪電動(dòng)自行車免費(fèi)登記、上牌照工作.電動(dòng)自行車牌照分免費(fèi)和收費(fèi)(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個(gè)不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進(jìn)行電話訪談.
(Ⅰ)應(yīng)從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?
(Ⅱ)設(shè)從甲小區(qū)抽取的居民為
,丙小區(qū)抽取的居民為
.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機(jī)抽取2人接受問(wèn)卷調(diào)查.
(。┰囉盟o字母列舉出所有可能的抽取結(jié)果;
(ⅱ)設(shè)
為事件“抽取的2人來(lái)自不同的小區(qū)”,求事件
發(fā)生的概率.
【答案】(Ⅰ)甲小區(qū)抽取3人、丙小區(qū)抽取4人.(Ⅱ)(i)見解析(ii)
.
【解析】
(Ⅰ)利用分層抽樣的性質(zhì)能求出應(yīng)從甲、乙、丙三個(gè)不同類型小區(qū)中分別抽取得3人,3人,4人.
(Ⅱ)(。從甲小區(qū)抽取的3位居民為
,丙小區(qū)抽取的4人分別為
利用列舉法能求出所有可能結(jié)果.
(ⅱ)由(ⅰ)可得基本事件總個(gè)數(shù),
為事件“抽取的2人來(lái)自不同的小區(qū)”利用列舉法能求出事件
發(fā)生的概率.
(Ⅰ)因?yàn)槿齻(gè)小區(qū)共有50000名居民,所以運(yùn)用分層抽樣抽取甲、丙小區(qū)的人數(shù)分別為:甲小區(qū):
(人);
丙小區(qū):
(人).
即甲小區(qū)抽取3人、丙小區(qū)抽取4人.
(Ⅱ)(i)設(shè)甲小區(qū)抽取的3人分別為
,丙小區(qū)抽取的4人分別為
,
則從7名居民中抽2名居民共有21種可能情況:
![]()
![]()
![]()
,
(ii)顯然,事件
包含的基本事件有:
![]()
共12種,
所以
.
故抽取的2人來(lái)自不同的小區(qū)的概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高中生在被問(wèn)及“家,朋友聚集的地方,個(gè)人空間”三個(gè)場(chǎng)所中“感到最幸福的場(chǎng)所在哪里?”這個(gè)問(wèn)題時(shí),從中國(guó)某城市的高中生中,隨機(jī)抽取了55人,從美國(guó)某城市的高中生中隨機(jī)抽取了45人進(jìn)行答題.中國(guó)高中生答題情況是:選擇家的占
、朋友聚集的地方占
、個(gè)人空間占
.美國(guó)高中生答題情況是:朋友聚集的地方占
、家占
、個(gè)人空間占
.如下表:
在家里最幸福 | 在其它場(chǎng)所幸福 | 合計(jì) | |
中國(guó)高中生 | |||
美國(guó)高中生 | |||
合計(jì) |
(Ⅰ)請(qǐng)將
列聯(lián)表補(bǔ)充完整;試判斷能否有
的把握認(rèn)為“戀家”與否與國(guó)別有關(guān);
(Ⅱ)從被調(diào)查的不“戀家”的美國(guó)學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,再?gòu)?/span>4人中隨機(jī)抽取2人到中國(guó)交流學(xué)習(xí),求2人中含有在“個(gè)人空間”感到幸福的學(xué)生的概率.
附:
,其中
.
| 0.050 | 0.025 | 0.010 | 0.001 |
| 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推動(dòng)文明城市創(chuàng)建,提升城市整體形象,2018年12月30日鹽城市人民政府出臺(tái)了《鹽城市停車管理辦法》,2019年3月1日起施行.這項(xiàng)工作有利于市民養(yǎng)成良好的停車習(xí)慣,幫助他們樹立綠色出行的意識(shí),受到了廣大市民的一致好評(píng).現(xiàn)從某單位隨機(jī)抽取80名職工,統(tǒng)計(jì)了他們一周內(nèi)路邊停車的時(shí)間
(單位:小時(shí)),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:
![]()
組號(hào) | 分組 | 頻數(shù) |
1 |
| 6 |
2 |
| 8 |
3 |
| 22 |
4 |
| 28 |
5 |
| 12 |
6 |
| 4 |
(1)從該單位隨機(jī)選取一名職工,試計(jì)算這名職工一周內(nèi)路邊停車的時(shí)間少于8小時(shí)的頻率;
(2)求頻率分布直方圖中
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,四邊形
是菱形,四邊形
是正方形,
,
,
,點(diǎn)
為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),方程
在區(qū)間
內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確命題的個(gè)數(shù)是( )
(1)若函數(shù)
的定義域
關(guān)于原點(diǎn)對(duì)稱,則
為偶函數(shù)的充要條件為對(duì)任意的
,
都成立;
(2)若函數(shù)
的定義域
關(guān)于原點(diǎn)對(duì)稱,則“
”是“
為奇函數(shù)”的必要條件;
(3)函數(shù)
對(duì)任意的實(shí)數(shù)
都有
,則
在實(shí)數(shù)集
上是增函數(shù);
(4)已知函數(shù)
在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)
的取值范圍是
.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的兩個(gè)焦點(diǎn)
,
,且橢圓過(guò)點(diǎn)
,
,且
是橢圓上位于第一象限的點(diǎn),且
的面積
.
![]()
(1)求點(diǎn)
的坐標(biāo);
(2)過(guò)點(diǎn)
的直線
與橢圓
相交于點(diǎn)
,
,直線
,
與
軸相交于
,
兩點(diǎn),點(diǎn)
,則
是否為定值,如果是定值,求出這個(gè)定值,如果不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
,點(diǎn)
在橢圓
上,橢圓
的離心率是
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)
為橢圓長(zhǎng)軸的左端點(diǎn),
為橢圓上異于橢圓
長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線
斜率分別為
,若
,請(qǐng)判斷直線
是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com