欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

【題目】某學校為了了解高中生的藝術素養(yǎng),從學校隨機選取男,女同學各50人進行研究,對這100名學生在音樂、美術、戲劇、舞蹈等多個藝術項目進行多方位的素質測評,并把調查結果轉化為個人的素養(yǎng)指標,制成下圖,其中“*”表示男同學,“+”表示女同學.

,則認定該同學為“初級水平”,若,則認定該同學為“中級水平”,若,則認定該同學為“高級水平”;若,則認定該同學為“具備一定藝術發(fā)展?jié)撡|”,否則為“不具備明顯藝術發(fā)展?jié)撡|”.

(I)從50名女同學的中隨機選出一名,求該同學為“初級水平”的概率;

(Ⅱ)從男同學所有“不具備明顯藝術發(fā)展?jié)撡|的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;

(Ⅲ)試比較這100名同學中,男、女生指標的方差的大。ㄖ恍鑼懗鼋Y論).

【答案】(I) .(Ⅱ).(Ⅲ)這100名同學中男同學指標的方差大于女同學指標的方差.

【解析】

(I)由圖知,在50名參加測試的女同學中,指標x0.6的有15人,由此能求出該同學為“初級水平”的概率;

(Ⅱ)利用古典概型概率公式即可得到結果;

(Ⅲ)由圖可知,這100名同學中男同學指標的方差大于女同學指標的方差.

(I)由圖知,在50名參加測試的女同學中,指標的有15人,

所以,從50名女同學中隨機選出一名,該名同學為“初級水平”的概率為.

(Ⅱ)男同學“不具備明顯藝術發(fā)展?jié)撡|的中級或高級水平”共有6人,其中“中級水平”有3人,分別記為,.“高級水平”有3人,分別記為,,,所有可能的結果組成的基本事件有:

,,,,,,,,,,共15個,其中兩人均為“高級水平”的共有3個,所以,所選2人均為“高級水平”的概率.

(Ⅲ)由圖可知,這100名同學中男同學指標的方差大于女同學指標的方差.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,底面為直角三角形,,,,點是線段上一動點,則的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動圓P與圓M外切并與圓N內切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】釣魚島事件以來,中日關系日趨緊張并不斷升級.為了積極響應保釣行動,某學校舉辦了一場保釣知識大賽,共分兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的同學中,每組各任選1個同學,作為保釣行動代言人”.

(1)求選出的2個同學中恰有1個女生的概率;

(2)X為選出的2個同學中女生的個數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了檢驗設備M與設備N的生產效率,研究人員作出統(tǒng)計,得到如下表所示的結果,則

設備M

設備N

生產出的合格產品

48

43

生產出的不合格產品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

參考公式:,其中.

A. 有90%的把握認為生產的產品質量與設備的選擇有關

B. 沒有90%的把握認為生產的產品質量與設備的選擇有關

C. 可以在犯錯誤的概率不超過0.01的前提下認為生產的產品質量與設備的選擇有關

D. 不能在犯錯誤的概率不超過0.1的前提下認為生產的產品質量與設備的選擇有關

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調查,銷售單價x和銷售量y之間的一組數據如下表所示:

月份

1

2

3

4

5

6

銷售單價(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14.2

(1)根據1至5月份的數據,求出y關于x的回歸直線方程;

(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?

(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).

參考公式:回歸直線方程,其中,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現(xiàn)要完成下列3項抽樣調查:

①從15種疫苗中抽取5種檢測是否合格.

②渦陽縣某中學共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對學校校務公開方面的意見,擬抽取一個容量為20的樣本.

③渦陽縣某中學報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結束后,為了聽取意見,需要請28名聽眾進行座談.

較為合理的抽樣方法是( )

A. ①簡單隨機抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡單隨機抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡單隨機抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡單隨機抽樣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 數列{bn},{cn}滿足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若數列{an}是公差為2的等差數列,求數列{cn}的通項公式;
(2)若存在實數λ,使得對一切n∈N*,有bn≤λ≤cn , 求證:數列{an}是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f (x)=ex﹣ax﹣1,其中e為自然對數的底數,a∈R.
(1)若a=e,函數g (x)=(2﹣e)x. ①求函數h(x)=f (x)﹣g (x)的單調區(qū)間;
②若函數F(x)= 的值域為R,求實數m的取值范圍;
(2)若存在實數x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

同步練習冊答案