【題目】已知橢圓
的離心率為
,過左焦點(diǎn)
且垂直于長軸的弦長為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)點(diǎn)
為橢圓
的長軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)
且斜率為
的直線
交橢圓
于
兩點(diǎn),證明:
為定值.
【答案】(1)
(2)詳見解析
【解析】
試題分析:(1)過左焦點(diǎn)
且垂直于長軸的弦長為通徑長,即
,又離心率為
,得
,再由
,解方程組得
(2)解析幾何中證明定值問題,一般方法為以算代證,因?yàn)?/span>
,利用
,
消y得
,再聯(lián)立直線方程
與橢圓方程
,結(jié)合韋達(dá)定理,代入化簡得定值41
試題解析:(1)由
,可得橢圓方程
..........4分
(2)設(shè)
的方程為
,代入
并整理得:
.....................6分
設(shè)
,則
,
又因?yàn)?/span>
,同理
..............8分
則
,
所以
是定值.................................12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
:
與直線
(
)交于
,
兩點(diǎn).
(1)當(dāng)
時(shí),分別求
在點(diǎn)
和
處的切線方程;
(2)
軸上是否存在點(diǎn)
,使得當(dāng)
變動(dòng)時(shí),總有
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐
中,四邊形
是直角梯形,
底面
,
為
的中點(diǎn),
點(diǎn)在
上,且
.
(1)證明:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成
列聯(lián)表;
數(shù)學(xué)成績及格 | 數(shù)學(xué)成績不及格 | 合計(jì) | |
比較細(xì)心 | 45 | ||
比較粗心 | |||
合計(jì) | 60 | 100 |
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?
參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量
的臨界值參考表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長為
的直四棱柱
中,底面
為棱形,
為棱
上一點(diǎn),且![]()
![]()
(1)求證:平面
平面
;
(2)平面
將四棱柱
分成上、下兩部分,求這兩部分的體積之比.
(棱臺的體積公式為
,其中
分別為上、下底面面積,
為棱臺的高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ)若
在
處的切線與直線
平行,求
的值;
(Ⅱ)討論函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
有如下結(jié)論:
①該函數(shù)為偶函數(shù);
②若
,則
;
③其單調(diào)遞增區(qū)間是
;
④值域是
;
⑤該函數(shù)的圖象與直線
有且只有一個(gè)公共點(diǎn).(本題中
是自然對數(shù)的底數(shù))
其中正確的是__________.(請把正確結(jié)論的序號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,底面
是邊長為2的等邊三角形,
為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若四邊形
是正方形,且
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com