欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
對于函數①f(x)=4x+
1
x
-5
,②f(x)=|log2x|-(
1
2
)
x
,③f(x)=cos(x+2)-cosx,
判斷如下兩個命題的真假:命題甲:f(x)在區(qū)間(1,2)上是增函數;命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2<1.能使命題甲、乙均為真的函數的序號是
 
分析:分別分析①②③中三個函數的性質,求出它們的單調區(qū)間,以及他們在區(qū)間(0,+∞)上零點的個數,和題目中的兩個條件進行比照,即可得到答案.
解答:解:當函數f(x)=4x+
1
x
-5
,在區(qū)間(0,
1
2
)上單調遞減,在區(qū)間(
1
2
,+∞)上單調遞增,故命題甲:f(x)在區(qū)間(1,2)上是增函數為真命題;
當x=
1
2
時函數取極小值-1<0,故命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2=
1
4
<1.故①滿足條件;
當在區(qū)間(1,2)上函數的解析式可化為f(x)=log2x-(
1
2
)
x
,根據“增-減=增”,可得f(x)在區(qū)間(1,2)上是增函數;精英家教網
由函數y=|log2x|與函數y=
1
2
x
的圖象可得在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2<1,故②滿足條件;
由余弦函數的周期性,查得函數f(x)=cos(x+2)-cosx,在區(qū)間(0,+∞)上有無限多個零點,故③不滿足條件
故答案為:①②
點評:本題考查的知識點是命題的真假判斷與應用,函數單調性的判斷與證明,函數的零點,其中熟練掌握基本初等函數的性質,掌握函數性質的研究方法是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x)=
2
(sinx+cosx)
,給出下列四個命題:
①存在α∈(-
π
2
,0)
,使f(α)=
2
; 
②存在α∈(0,
π
2
)
,使f(x-α)=f(x+α)恒成立;
③存在φ∈R,使函數f(x+?)的圖象關于坐標原點成中心對稱;
④函數f(x)的圖象關于直線x=-
4
對稱;
⑤函數f(x)的圖象向左平移
π
4
就能得到y(tǒng)=-2cosx的圖象
其中正確命題的序號是
③④
③④

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=
sinx,sinx≥cosx
cosx,sinx<cosx
,則下列正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=asin3x+
b
x3
+c
(其中a、b∈R,c∈Z),選取a、b、c的一組值計算f(1)、f(-1),所得結果一定不是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=
x-1
x+1
,設f2(x)=f[f(x)],f3(x)=f[f2(x)],…fn+1(x)=f[fn(x)],(n∈N*,且n≥2),令集合M={x|f2012(x)=
1
x
,x∈R}
,則集合M為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數①f(x)=4x+
1
x
-5
,②f(x)=|log2x|-(
1
2
)x
,③f(x)=cos(x+2)-cosx,
判斷如下兩個命題的真假:
命題甲:f(x)在區(qū)間(1,2)上是增函數;
命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2<1.
能使命題甲、乙均為真的函數的序號是( 。
A、①B、②C、①③D、①②

查看答案和解析>>

同步練習冊答案