已知函數(shù)
,
,其中a∈R.
(1)若0<a≤2,試判斷函數(shù)h(x)=f (x)+g (x)
的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù)
若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得p (x1) = p (x2) 成立,試確定實數(shù)a的取值范圍.
(1)h (x)為單調(diào)減函數(shù).證明:由0<a≤2,x≥2,可得
=
=
.
由 ![]()
,
且0<a≤2,x≥2,所以
.從而函數(shù)h(x)為單調(diào)減函數(shù). (亦可先分別用定義法或?qū)?shù)法論證函數(shù)
在
上單調(diào)遞減,再得函數(shù)h(x)為單調(diào)減函數(shù).)
(2)①若a≤0,由x1≥2,
,x2<2,
,
所以g (x1) = g (x2)不成立.
②若a>0,由x>2時,
,
所以p(x)在
單調(diào)遞減.從而
,即
.
(a)若a≥2,由于x<2時,
,
所以p(x)在(-∞,2)上單調(diào)遞增,從而
,即
.
要使p (x1) = p (x2)成立,只需
,即
成立即可.
由于函數(shù)
在
的單調(diào)遞增,且q(4)=0,所以2≤a<4.
(b)若0<a<2,由于x<2時,![]()
所以p(x)在
上單調(diào)遞增,在
上單調(diào)遞減.從而
,
即
.
要使p (x1) = p (x2)成立,只需
成立,即
成立即可.
由0<a<2,得
.故當(dāng)0<a<2時,
恒成立.
綜上所述,a的取值范圍為(0,4).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的橫、縱坐標(biāo),則點P在直線x+y = 5下方的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義在
上的奇函數(shù)
滿足
,當(dāng)
時,
,則
在區(qū)間
內(nèi)是( )
A.減函數(shù)且
B.減函數(shù)且
C.增函數(shù)且
D.增函數(shù)且![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若圓錐的側(cè)面展開圖是圓心角為120°,半徑為l的扇形,則這個圓錐的表面積與側(cè)面積的比是( )
A.3:2 B.2:1 C.4:3 D.5:3
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com