【題目】已知
(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.
【答案】(1)見解析;(2)![]()
【解析】
(1)依題意,可得函數(shù)f(x)的定義域為{x|x≠0},利用函數(shù)奇偶性的定義可判斷出f(﹣x)=f(x),從而可知f(x)的奇偶性;
(2)由(1)知f(x)為偶函數(shù),故只需討論x>0時的情況,依題意,當(dāng)x>0時,由f(x)>0恒成立,即可求得a的取值范圍.
(1)由于ax-1≠0,則ax≠1,得x≠0,
所以函數(shù)f(x)的定義域為{x|x≠0}.
對于定義域內(nèi)任意x,有
f(-x)=
(-x)3
=
(-x)3
=
(-x)3
=
x3=f(x).
∴f(x)是偶函數(shù).
(2)由(1)知f(x)為偶函數(shù),
∴只需討論x>0時的情況,當(dāng)x>0時,要使f(x)>0,即
x3>0,
即
+
>0,即
>0,則ax>1.
又∵x>0,∴a>1.
因此a>1時,f(x)>0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=lg(-x-1)的定義域與函數(shù)g(x)=lg(x-3)的定義域的并集為集合A,函數(shù)t(x)=
-a(x≤2)的值域為集合B.
(1)求集合A與B.
(2)若集合A,B滿足A∩B=B,求實數(shù)a取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為增函數(shù),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y)
(1)求證:f(x)是奇函數(shù).
(2)是否存在m,使
,對于任意x∈[1,2]恒成立?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了
月
日至
月
日的每天晝夜溫差與實驗室每天每
顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這
組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再對被選取的
組數(shù)據(jù)進行檢驗.
(1)求選取的
組數(shù)據(jù)恰好是不相鄰
天數(shù)據(jù)的概率;
(2)若選取的是
月
日與
月
日的兩組數(shù)據(jù),請根據(jù)
月
日與
月
日的數(shù)據(jù),求
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過
顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進行3次射擊,甲每次擊中目標(biāo)的概率為
,乙每次擊中目標(biāo)的概率為
。
(1)記甲擊中目標(biāo)的次數(shù)為
,求
的概率分布及數(shù)學(xué)期望;
(2)求乙至多擊目標(biāo)2次的概率;
(3)求甲恰好比乙多擊中目標(biāo)2次的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量
=(cosθ,sinθ),
=(﹣
,
);
(1)若
∥
,且θ∈(0,π),求θ;
(2)若|3
+
|=|
﹣3
|,求|
+
|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,![]()
(1)寫出函數(shù)
的解析式;
(2)若直線
與曲線
有三個不同的交點,求
的取值范圍;
(3)若直線
與曲線
在
內(nèi)有交點,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com