(本小題滿分14分)在數(shù)列
中,
是數(shù)列
前
項和,
,當(dāng)![]()
(I)求證:數(shù)列
是等差數(shù)列;
(II)設(shè)
求數(shù)列
的前
項和
;
(III)是否存在自然數(shù)
,使得對任意自然數(shù)
,都有
成立?若存在,求出
的最大值;若不存在,請說明理由.
(I)見解析(II)
(III)存在,
的最大值為
,理由見解析
解析試題分析:(I)由已知得,當(dāng)
時,
,
所以
,又因為
,
所以數(shù)列
是以1為首項,2為公差的等差數(shù)列. ……4分
(II )由(I)知,
,
所以
.
所以
, ……6分
所以![]()
. ……8分
(III)令
,顯然
在
上是增函數(shù),
所以當(dāng)
時,
取得最小值
,
依題意可知,要使得對任意
,都有
,
只要
,即
,所以
,
因為
所以
的最大值為
. ……14分
考點:本小題主要考查等差數(shù)列的證明,裂項法求和、數(shù)列與不等式的綜合應(yīng)用問題,考查學(xué)生綜合分析問題、解決問題的能力和邏輯思維能力和運(yùn)算求解能力.
點評:解決此類問題要抓住一個中心——函數(shù),兩個密切聯(lián)系:一是數(shù)列和函數(shù)之間的密切聯(lián)系,數(shù)列的通項公式是數(shù)列問題的核心,函數(shù)的解析式是研究函數(shù)問題的基礎(chǔ);二是方程、不等式與函數(shù)的聯(lián)系,利用它們之間的對應(yīng)關(guān)系進(jìn)行靈活處理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)數(shù)列
的前
項和為
.已知
,
,
.
(Ⅰ)設(shè)
,求數(shù)列
的通項公式;
(Ⅱ)若
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的前n項和為
,且滿足
=2-
,
=1,2,3,….
(1)求數(shù)列
的通項公式;
(2)若數(shù)列
滿足
=1,且
=
+
,求數(shù)列
的通項公式;
(3)設(shè)
,求數(shù)列
的前
項和為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{
}中,
,并且對任意
都有
成立,令
.
(Ⅰ)求數(shù)列{
}的通項公式;
(Ⅱ)設(shè)數(shù)列{
}的前n項和為
,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在數(shù)列
中,
,
,
.
(1)證明數(shù)列
是等比數(shù)列;
(2)求數(shù)列
的前
項和
;
(3)證明不等式
,對任意
皆成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在R上定義運(yùn)算
,若不等式
成立,則實數(shù)a的取值范圍是( ).
| A.{a| | B.{a| |
| C.{a| | D.{a| |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com