欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知函數(shù)$f(x)=\frac{{{{({x+1})}^0}}}{{\sqrt{1-x}}}$,則其定義域?yàn)閧x|x<1且x≠-1}.

分析 由0指數(shù)冪的底數(shù)不等于0,分母中根式內(nèi)部的代數(shù)式大于0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{x+1≠0}\\{1-x>0}\end{array}\right.$,解得x<1且x≠-1.
∴函數(shù)$f(x)=\frac{{{{({x+1})}^0}}}{{\sqrt{1-x}}}$的定義域?yàn)閧x|x<1且x≠-1}.
故答案為:{x|x<1且x≠-1}.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.王華大學(xué)畢業(yè)后在一家公司做推銷(xiāo)員,他對(duì)自己的工作業(yè)績(jī)進(jìn)行匯總時(shí)得到如下的一個(gè)表格:
工作時(shí)間(單位:月)與月推銷(xiāo)金額(單位:萬(wàn)元)的有關(guān)數(shù)據(jù):
工作時(shí)間x 35679
月推銷(xiāo)金額y23345
(1)畫(huà)出散點(diǎn)圖,判斷月推銷(xiāo)金額y與工作時(shí)間x是否有線性相關(guān)關(guān)系;
(2)如果y與x之間具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)若王華的工作時(shí)間為12個(gè)月,試估計(jì)他的月推銷(xiāo)金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知四棱錐A-BCDE的底面是邊長(zhǎng)為4的正方形,面ABC⊥底面BCDE,且AB=AC=4,則四棱錐A-BCDE外接球的表面積為$\frac{112π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)極坐標(biāo)的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸是x軸的正半軸,取相同的單位長(zhǎng)度,已知直線1的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),且α≠kπ+$\frac{π}{2}$,k∈z),圓C的極坐標(biāo)方程為p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圓C與直線l不相交.
(I)求直線l的普通方程;
(Ⅱ)設(shè)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a為參數(shù)),點(diǎn)P在曲線C1上.求點(diǎn)P到直線1距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$g(x)=\frac{x+2}{x-6}$,
(1)點(diǎn)(3,14)在函數(shù)的圖象上嗎?;
(2)當(dāng)x=4時(shí),求g(x)的值;
(3)當(dāng)g(x)=2時(shí),求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,則sin2α的值為(  )
A.$\frac{7}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.-$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.命題“?x>0,f(x)<x”的否定形式是(  )
A.?x>0,f(x)≥xB.?x≤0,f(x)≥xC.?x0>0,f(x0)≥x0D.?x0≤0,f(x0)≥x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在平行四邊形ABCD中,AC=5,BD=4,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=( 。
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,點(diǎn)E為AC中點(diǎn).將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.

(Ⅰ)在CD上找一點(diǎn)F,使AD∥平面EFB;
(Ⅱ)求三棱錐C-ABC的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案