【題目】(2017·黃岡質(zhì)檢)如圖,在棱長均為2的正四棱錐P-ABCD中,點E為PC的中點,則下列命題正確的是( )
![]()
A. BE∥平面PAD,且BE到平面PAD的距離為![]()
B. BE∥平面PAD,且BE到平面PAD的距離為![]()
C. BE與平面PAD不平行,且BE與平面PAD所成的角大于30°
D. BE與平面PAD不平行,且BE與平面PAD所成的角小于30°
【答案】D
【解析】![]()
連接AC,BD,交點為O,連接OP,以O為坐標(biāo)原點,OC,OD,OP所在的直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系,由正四棱錐P-ABCD的棱長均為2,點E為PC的中點,知A(-
,0,0),B(0,-
,0),C(
,0,0),D(0,
,0),P(0,0,
),E
,則
=
,
=(-
,0,-
),
=(0,
,-
),設(shè)m=(x,y,z)是平面PAD的法向量,則m⊥
,且m⊥
,即
,令x=1,則z=-1,y=-1,m=(1,-1,-1)是平面PAD的一個法向量,設(shè)BE與平面PAD所成的角為θ,則sinθ=
,故BE與平面PAD不平行,且BE與平面PAD所成的角小于30°,故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-aln x(a>0)的最小值是1.
(1)求a;
(2)若關(guān)于x的方程f2(x)ex-6mf(x)+9me-x=0在區(qū)間[1,+∞)有唯一的實根,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三一班、二班各有6名學(xué)生去參加學(xué)校組織的高中數(shù)學(xué)競賽選拔考試,成績?nèi)缜o葉圖所示.
![]()
(1)若一班、二班6名學(xué)生的平均分相同,求
值;
(2)若將競賽成績在
、
、
內(nèi)的學(xué)生在學(xué)校推優(yōu)時,分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學(xué)生中選兩名,求推優(yōu)時,這兩名學(xué)生賦分的和為4分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)經(jīng)過點(
,1),以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得
恒為定值?若存在,求出該定值及點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形
與等邊
所在的平面相互垂直,
,點E,F分別為PC和AB的中點.
(Ⅰ)求證:EF∥平面PAD
(Ⅱ)證明:
;
(Ⅲ)求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-ax+2lnx,a∈R.
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線垂直于直線y=x,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>1時,f(x)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856262)
如圖所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中點,AB⊥平面B1C1CB,∠BCC1=60°.
(Ⅰ)求證:AC⊥平面BDC1;
(Ⅱ)E是線段CC1上的動點,判斷點E到平面AA1B1B的距離是否為定值,若是,求出此定值;否則,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C1的參數(shù)方程為:
(θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為:
,直線l的直角坐標(biāo)方程為
.
(l)求曲線C1和直線l的極坐標(biāo)方程;
(2)已知直線l分別與曲線C1、曲線C2交異于極點的A,B,若A,B的極徑分別為ρ1,ρ2,求|ρ2﹣ρ1|的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com