定義在R上的函數(shù)
,對任意不等的實(shí)數(shù)
都有
成立,又函數(shù)
的圖象關(guān)于點(diǎn)(1,0)對稱,若不等式
成立,則當(dāng)1≤x<4時(shí),
的取值范圍是
A.
B.
C.
D.![]()
A
【解析】
試題分析:解:因?yàn)閷θ我獠坏葘?shí)數(shù)x1,x2滿足
所以函數(shù)f(x)是定義在R上的單調(diào)遞減函數(shù).因?yàn)楹瘮?shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,所以函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對稱,即函數(shù)f(x)是定義在R上的奇函數(shù).又因?yàn)閷τ谌我獾膞,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立,所以f(x2-2x)≥f(-2y+y2)成立,所以根據(jù)函數(shù)的單調(diào)性可得:對于任意的x,y∈R,不等式x2-2x≥y2-2y成立,即(x-y)(x+y-2)≥0(1≤x≤4),所以可得其可行域,如圖所示:
![]()
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071413330114407961/SYS201307141333241504239440_DA.files/image003.png">=
所以
表示點(diǎn)(x,y)與點(diǎn)(0,0)連線的斜率,所以結(jié)合圖象可得:
的最小值是直線OC的斜率-
,最大值是直線AB的斜率1,所以
的范圍為:[
故答案為:![]()
考點(diǎn):抽象函數(shù)的性質(zhì)
點(diǎn)評:解決此類問題的關(guān)鍵是熟練掌握抽象函數(shù)的性質(zhì)的證明與判斷,如單調(diào)性、奇偶性的證明與判斷,并且熟練的利用函數(shù)的性質(zhì)解有關(guān)的不等式,以及熟練掌握線性規(guī)劃問題,此題綜合性較強(qiáng)知識點(diǎn)也比較零散,對學(xué)生掌握知識與運(yùn)用知識的能力有一定的要求.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x1+x2 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com