欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.將數(shù)列{2n-1}按“第n組有n個(gè)數(shù)”的規(guī)則分組如下:(1),(3,5),(7,9,11),…,則第100組中的第三個(gè)數(shù)是9905.

分析 當(dāng)n≥2時(shí),前n-1組共有1+2+…+(n-1)=$\frac{(n-1)n}{2}$個(gè)奇數(shù).其最后一個(gè)奇數(shù)為2×$\frac{(n-1)n}{2}$-1=n2-n-1.求出第100組中的最后一個(gè)奇數(shù)為9809,即可得出結(jié)論.

解答 解:當(dāng)n≥2時(shí),前n-1組共有1+2+…+(n-1)=$\frac{(n-1)n}{2}$個(gè)奇數(shù).
其最后一個(gè)奇數(shù)為2×$\frac{(n-1)n}{2}$-1=n2-n-1.
∴第100組中的最后一個(gè)奇數(shù)為9809,
∴第100組中的第三個(gè)數(shù)是9905.
故答案為:9905.

點(diǎn)評(píng) 本題考查了等差數(shù)列通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,直線l與雙曲線$E:{x^2}-\frac{y^2}{4}=1$及其漸近線依次交于A、B、C、D四點(diǎn),記$\frac{{|{AB}|}}{{|{BD}|}}=λ,\frac{{|{AC}|}}{{|{CD}|}}=μ$.
(Ⅰ)若直線l的方程為y=x+2,求λ及μ;
(Ⅱ)請(qǐng)根據(jù)(Ⅰ)的計(jì)算結(jié)果猜想λ與μ的關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.編寫一個(gè)程序框圖,求函數(shù)$f(x)=\left\{\begin{array}{l}2x,x≥3\\{x^2},x<3\end{array}\right.$的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.把一根直徑是20厘米,長是2米的圓柱形木材鋸成同樣的3段,表面積增加了400π平方厘米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓的中心在原點(diǎn),離心率$e=\frac{1}{2}$且它的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則此橢圓的方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{8}+\frac{y^2}{6}=1$C.$\frac{x^2}{2}+{y^2}=1$D.$\frac{x^2}{4}+{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=ex,g(x)=ax2+bx+1.
(1)若函數(shù)f(x)與g(x)在x=0處的切線重合,求b的值;
(2)令h(x)=f′(x)-g′(x),求h(x)在[0,1]上的最小值;
(3)當(dāng)b=1時(shí),若不等式f(x)>g(x)對(duì)任意x∈(0,+∞)都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.小明和電腦進(jìn)行一次答題比賽,共4局,每局10分,現(xiàn)將小明和電腦的4局比賽的得分統(tǒng)計(jì)如表:
小明5768
電腦69510
(1)求小明和電腦在本次比賽中的平均得分x1,x2及方差s12,s22;
(2)從小明和電腦的4局比賽得分中隨機(jī)各選取1個(gè)分?jǐn)?shù),并將其得分分別記為m,n,求|m-n|>2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x}{lnx}$+mx(m為常數(shù)).
(1)若y=f(x)在x=e2處的切線與直線4x+9y-2016=0垂直,求y=f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≤$\frac{{e}^{2}}{2}$在[e,e2]上值成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx+ax2-3,且f'(1)=-1,
(1)求f(x)的解析式;
(2)若對(duì)于任意x∈(0,+∞),都有f(x)-mx≤-3,求m的最小值;
(3)證明:函數(shù)y=f(x)-xex+x2的圖象在直線y=-2x-3的下方.

查看答案和解析>>

同步練習(xí)冊答案