【題目】某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試
假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
,每次測(cè)試時(shí)間間隔恰當(dāng),每次測(cè)試通過(guò)與否互相獨(dú)立.
(1)求該學(xué)生考上大學(xué)的概率.
(2)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,記該生參加測(cè)試的次數(shù)為X,求X的概率分布及X的數(shù)學(xué)期望.
【答案】(1)
;(2)分布列見(jiàn)解析,![]()
【解析】
(1)記“該生考上大學(xué)”的事件為事件A,其對(duì)立事件為
,
就是五次都未通過(guò),或者5次考試中只有1次通過(guò),由對(duì)立事件概率公式可得.
(2)參加測(cè)試次數(shù)X的可能取值為2,3,4,5,分別計(jì)算概率,注意事件
的含義,如
表示前3次中只有1次通過(guò),而第4次通過(guò),便
還包括5次都沒(méi)通過(guò).由此可得分布列,再由期望公式計(jì)算期望.
解:(1)記“該生考上大學(xué)”的事件為事件A,其對(duì)立事件為
,每次測(cè)試通過(guò)與否互相獨(dú)立,則
![]()
所以
,
所以該學(xué)生考上大學(xué)的概率為
.
(2)參加測(cè)試次數(shù)X的可能取值為2,3,4,5,則
,
,
,
.
所以X的概率分布為:
X | 2 | 3 | 4 | 5 |
P |
|
|
|
|
所以X的數(shù)學(xué)期望為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著現(xiàn)代社會(huì)的發(fā)展,我國(guó)對(duì)于環(huán)境保護(hù)越來(lái)越重視,企業(yè)的環(huán)保意識(shí)也越來(lái)越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測(cè)系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用預(yù)算定為1200萬(wàn)元,日常全天候開(kāi)啟3套環(huán)境監(jiān)測(cè)系統(tǒng),若至少有2套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即同時(shí)啟動(dòng)另外2套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測(cè),且后啟動(dòng)的這2套監(jiān)測(cè)系統(tǒng)中只要有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個(gè)時(shí)間段(以1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)的概率均為
,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)情況相互獨(dú)立.
(1)當(dāng)
時(shí),求某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;
(2)若每套環(huán)境監(jiān)測(cè)系統(tǒng)運(yùn)行成本為300元/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測(cè)系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬(wàn)元.現(xiàn)以此方案實(shí)施,問(wèn)該企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用是否會(huì)超過(guò)預(yù)算(全年按9000小時(shí)計(jì)算)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
中,
,
,
分別為
,
邊的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
.
![]()
(1)證明:
平面
;
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx
a,f′(x)是f(x)的導(dǎo)函數(shù),若關(guān)于x的方程f′(x)
0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+2|x﹣m|
(1)當(dāng)m=2時(shí),求f(x)≤9的解集;
(2)若f(x)≤2的解集不是空集,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
滿(mǎn)足:對(duì)任意
,都有
.
(1)若
,求
的值;
(2)若
是等比數(shù)列,求
的通項(xiàng)公式;
(3)設(shè)
,
,求證:若
成等差數(shù)列,則
也成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三陵錐
中,
為等腰直角三角形,
,
為正三角形,
為
的中點(diǎn).
![]()
(1)證明:平面
平面
;
(2)若二面角
的平面角為銳角,且棱錐
的體積為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,函數(shù)
.
(Ⅰ)判斷函數(shù)
的單調(diào)性;
(Ⅱ)若
時(shí),對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美團(tuán)外賣(mài)和百度外賣(mài)兩家公司其“騎手”的日工資方案如下:美團(tuán)外賣(mài)規(guī)定底薪70元,每單抽成1元;百度外賣(mài)規(guī)定底薪100元,每日前45單無(wú)抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個(gè)隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:
![]()
(Ⅰ)求百度外賣(mài)公司的“騎手”一日工資
(單位:元)與送餐單數(shù)
的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問(wèn)題:
①記百度外賣(mài)的“騎手”日工資為
(單位:元),求
的分布列和數(shù)學(xué)期望;
②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com