【題目】如圖,設(shè)橢圓C:
(a>b>0),動(dòng)直線l與橢圓C只有一個(gè)公共點(diǎn)P,且點(diǎn)P在第一象限. ![]()
(1)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo);
(2)若過原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a﹣b.
【答案】
(1)解:設(shè)直線l的方程為y=kx+m(k<0),由
,消去y得
(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.
由于直線l與橢圓C只有一個(gè)公共點(diǎn)P,故△=0,即b2﹣m2+a2k2=0,
此時(shí)點(diǎn)P的橫坐標(biāo)為﹣
,代入y=kx+m得
點(diǎn)P的縱坐標(biāo)為﹣k
+m=
,
∴點(diǎn)P的坐標(biāo)為(﹣
,
),
又點(diǎn)P在第一象限,故m>0,
故m=
,
故點(diǎn)P的坐標(biāo)為P(
,
).
(2)解:由于直線l1過原點(diǎn)O且與直線l垂直,故直線l1的方程為x+ky=0,所以點(diǎn)P到直線l1的距離
d=
,
整理得:d=
,
因?yàn)閍2k2+
≥2ab,所以
≤
=a﹣b,當(dāng)且僅當(dāng)k2=
時(shí)等號(hào)成立.
所以,點(diǎn)P到直線l1的距離的最大值為a﹣b.
![]()
【解析】(1)設(shè)直線l的方程為y=kx+m(k<0),由
,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中點(diǎn)P的坐標(biāo);(2)由于直線l1過原點(diǎn)O且與直線l垂直,設(shè)直線l1的方程為x+ky=0,利用點(diǎn)到直線間的距離公式,可求得點(diǎn)P到直線l1的距離d=
,整理即可證得點(diǎn)P到直線l1的距離的最大值為a﹣b.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(2﹣sin(2x+
),﹣2),
=(1,sin2x),f(x)=![]()
, (x∈[0,
])
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊長分別為a,b,c,若f(
)=1,b=1,c=
, 求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的導(dǎo)函數(shù)f′(x)為偶函數(shù),且曲線y=f(x)在點(diǎn)(0,f(0))處的切線的斜率為4﹣c.
(1)確定a,b的值;
(2)若c=3,判斷f(x)的單調(diào)性;
(3)若f(x)有極值,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)實(shí)數(shù)x,y滿足
時(shí),1≤ax+y≤4恒成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銀川一中為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,抽取在校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成
,
六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 |
| ||
女 |
| ||
合計(jì) |
(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫下面的
列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
(2)在
這兩組中采取分層抽樣,抽取6人,再從這6名學(xué)生中隨機(jī)抽取2人參加體育知識(shí)問卷調(diào)查,求這2人中一人來自“課外體育達(dá)標(biāo)”和一人來自“課外體育不達(dá)標(biāo)”的概率.
![]()
附參考公式與:![]()
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)
,若在其定義域內(nèi)存在實(shí)數(shù)
,使得
成立,則稱
有“※點(diǎn)”
。
(1)判斷函數(shù)
在
上是否有“※點(diǎn)”。并說明理由;
(2)若函數(shù)
在
上有“※點(diǎn)”,求正實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問100名性別不同的高二學(xué)生是否愛吃零食,得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 10 | 40 | 50 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
附表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
其中![]()
則下列結(jié)論正確的是( )
A. 在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為“是否愛吃零食與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為“是否愛吃零食與性別無關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.025的前提下,認(rèn)為“是否愛吃零食與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.025的前提下,認(rèn)為“是否愛吃零食與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個(gè)結(jié)論:
集合
2,3,4,5,
,集合
,若f:
,則對(duì)應(yīng)關(guān)系f是從集合A到集合B的映射;
函數(shù)
的定義域?yàn)?/span>
,則函數(shù)
的定義域也是
;
存在實(shí)數(shù)
,使得
成立;
是函數(shù)
的對(duì)稱軸方程;
曲線
和直線
的公共點(diǎn)個(gè)數(shù)為m,則m不可能為1;
其中正確的有______
寫出所有正確的序號(hào)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)二項(xiàng)式(1-x)10,
(1)展開式的中間項(xiàng)是第幾項(xiàng)?寫出這一項(xiàng);
(2)求展開式中各二項(xiàng)式系數(shù)之和;
(3)寫出展開式中系數(shù)最大的項(xiàng).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com