【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)寫(xiě)出
的普通方程和
的直角坐標(biāo)方程;
(2)若
與
相交于![]()
兩點(diǎn),求
的面積.
【答案】(1)
的普通方程為
,
的直角坐標(biāo)方程為
;(2)
.
【解析】
(1)由曲線
的參數(shù)方程能求出
的普通方程,曲線
的極坐標(biāo)方程轉(zhuǎn)化為
,由此能求出
的直角坐標(biāo)方程;
(2)求出原點(diǎn)
到直線
的距離為
,化
的參數(shù)方程為普通方程
,可得
表示圓心為
,半徑
的圓,求出
到直線
的距離,再由垂徑定理求得
,代入三角形面積公式求解.
(1)消去參數(shù)可得
的普通方程為
,
由
,得
,
又因?yàn)?/span>
,
,
所以
的直角坐標(biāo)方程為
;
(2)如圖:
![]()
原點(diǎn)
到直線
的距離
,
曲線
的標(biāo)準(zhǔn)方程為
,表示圓心為
,半徑
的圓,
到直線
的距離
,
故
,
所以
,
綜上,
的面積為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的右頂點(diǎn)為
,上頂點(diǎn)為
.已知橢圓的離心率為
,
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線
:
與橢圓交于
,
兩點(diǎn),且點(diǎn)
在第二象限.
與
延長(zhǎng)線交于點(diǎn)
,若
的面積是
面積的3倍,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代足球運(yùn)動(dòng)是世上開(kāi)展得最廣泛、影響最大的運(yùn)動(dòng)項(xiàng)目,有人稱它為“世界第一運(yùn)動(dòng)”.早在2000多年前的春秋戰(zhàn)國(guó)時(shí)代,就有了一種球類游戲“蹴鞠”,后來(lái)經(jīng)過(guò)阿拉伯人傳到歐洲,發(fā)展成現(xiàn)代足球.1863年10月26日,英國(guó)人在倫敦成立了世界上第一個(gè)足球運(yùn)動(dòng)組織——英國(guó)足球協(xié)會(huì),并統(tǒng)一了足球規(guī)則.人們稱這一天是現(xiàn)代足球的誕生日.如圖所示,足球表面是由若干黑色正五邊形和白色正六邊形皮圍成的,我們把這些正五邊形和正六邊形都稱為足球的面,任何相鄰兩個(gè)面的公共邊叫做足球的棱.已知足球表面中的正六邊形的面為20個(gè),則該足球表面中的正五邊形的面為______個(gè),該足球表面的棱為______條.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于圓周率
,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)
的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)x,y都小于1的正實(shí)數(shù)對(duì)
,再統(tǒng)計(jì)其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)
的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)
的值.如果統(tǒng)計(jì)結(jié)果是
,那么可以估計(jì)
的值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,平面
平面
,
為等邊三角形,
且
,
,
分別為
,
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線
和平面
所成角的正切值;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,已知傾斜角為
的直線
過(guò)點(diǎn)
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
,直線
與曲線
分別交于
、
兩點(diǎn).
(1)寫(xiě)出直線
的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若
,求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C:
=1(a>0,b>0)的左右焦點(diǎn)為F1,F2過(guò)點(diǎn)F1的直線l與雙曲線C的左支交于AB兩點(diǎn),△BF1F2的面積是△AF1F2面積的三倍,∠F1AF2=90°,則雙曲線C的離心率為( 。
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為
,點(diǎn)A的坐標(biāo)為
,且
.
(I)求橢圓的方程;
(II)設(shè)直線l:
與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若
(O為原點(diǎn)) ,求k的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com