分析 由條件利用同角三角函數(shù)的基本關(guān)系求得cosθ,利用二倍角公式求得sin2θ和cos2θ,再利用兩角和的正弦公式求得2sin(2θ+$\frac{π}{3}$)的值.
解答 解:∵sinθ=-$\frac{3}{5}$,θ∈(-$\frac{π}{2}$,0),∴cosθ=$\sqrt{{1-sin}^{2}θ}$=$\frac{4}{5}$,
∴sin2θ=2sinθcosθ=2•(-$\frac{3}{5}$)•$\frac{4}{5}$=-$\frac{24}{25}$,cos2θ=2cos2θ-1=$\frac{7}{25}$,
則2sin(2θ+$\frac{π}{3}$)=2sin2θcos$\frac{π}{3}$+2cos2θsin$\frac{π}{3}$=2•(-$\frac{24}{25}$)•$\frac{1}{2}$+2•$\frac{7}{25}$•$\frac{\sqrt{3}}{2}$=$\frac{7\sqrt{3}-24}{25}$,
故答案為:$\frac{7\sqrt{3}-24}{25}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,兩角和的正弦公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -4 | B. | 2 | C. | 0 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=log0.5|x| | B. | y=${3}^{{x}^{2}}$ | C. | y=-x2+x | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com