| A. | m≥1 | B. | m≥1或0<m<1 | C. | m≥1且m≠5 | D. | 0<m<5且m≠1 |
分析 通過聯(lián)立直線與橢圓方程,利用根的判別式大于等于0計算即得結(jié)論.
解答 解:由題可知:m≠5,
聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{5}+\frac{{y}^{2}}{{m}^{2}}=1}\end{array}\right.$,恒有公共點要求△≥0對k∈R恒成立,
∴△=100k2-4(m+5k2)(5-5m)≥0,
整理可得$\frac{1-m}{5}≤{k}^{2}$,
由于k2的最小值為0,所以$\frac{1-m}{5}≤0$,
即m≥1且m≠5,
故選:C.
點評 本題考查橢圓的簡單性質(zhì),注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=$±\frac{3}{2}x$ | B. | y=$±\frac{2}{3}x$ | C. | y=$±\frac{9}{4}x$ | D. | y=$±\frac{4}{9}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{\sqrt{41}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com