已知函數(shù)![]()
(1)若
在
上單調(diào)遞增,求
的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)
對于區(qū)間
上的任意兩個值
總有以下不等式
成立,則稱函數(shù)
為區(qū)間
上的 “凹函數(shù)”.試證當
時,
為“凹函數(shù)”.
(1)
(2)理解凹函數(shù)的定義 ,然后結(jié)合中點函數(shù)值與任意兩點的函數(shù)值和的關(guān)系式作差法加以證明。
【解析】
試題分析:解(1)由
,得![]()
函數(shù)為
上單調(diào)函數(shù). 若函數(shù)為
上單調(diào)增函數(shù),則
在
上恒成立,即不等式
在
上恒成立. 也即
在
上恒成立.
令
,上述問題等價于
,而
為在
上的減函數(shù),則
,于是
為所求.
(2)證明:由
得
![]()
![]()
而
①
又
, ∴
②
∵
∴
,
∵
∴
③
由①、②、③得![]()
即
,從而由凹函數(shù)的定義可知函數(shù)為凹函數(shù)
考點:新定義和函數(shù)性質(zhì)的運用
點評:結(jié)合均值不等式的思想,以及函數(shù)的解析式來求解,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)![]()
(1)若
在
上為單調(diào)減函數(shù),求實數(shù)
取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù)
(1)若
在
處取得極值,求函數(shù)
的單調(diào)區(qū)間。(2)若存在
時,使得不等式
成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市薊縣高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
【題文】已知函數(shù)
.
(1)若
在
處取得極大值,求實數(shù)
的值;
(2)若
,求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
.
(1)若
在
上是增函數(shù),求實數(shù)
的取值范圍;
(2)若
是
的極值點,求
在
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省高三第一次學(xué)情摸底考試數(shù)學(xué)卷 題型:解答題
(本題滿分13 分)
已知函數(shù)![]()
(1)若在
的圖象上橫坐標為
的點處存在垂直于y 軸的切線,求a 的值;
(2)若
在區(qū)間(-2,3)內(nèi)有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)
的圖象與函數(shù)
的圖象恰有三個交點,若存在,試出實數(shù)m 的值;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com