【題目】如圖,在四棱錐
中,四邊形
為矩形,平面
平面
,
為
中點(diǎn),
.
![]()
(1)求證:
;
(2)若
與平面
所成的角為
,求二面角
的大小.
【答案】(1)證明見解析;(2)
.
【解析】
(1)由面面垂直的性質(zhì)定理可得出
平面
,可得出
,由等腰三角形三線合一的性質(zhì)可得出
,由此可得出
平面
,進(jìn)而得出
;
(2)設(shè)
,可得出
,
,由(1)可知,
與平面
所成的角為
,可得
,進(jìn)而以點(diǎn)
為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立空間直角坐標(biāo)系,利用空間向量法可求出二面角
的大小.
(1)
四邊形
為矩形,則
,
平面
平面
,平面
平面
,
平面
,
所以
面
,
平面
,
,
又
,
為
中點(diǎn),
,
,
平面
,
平面
,故
;
![]()
(2)不妨設(shè)
,由
得
,由(1)得
,∴
,∴
,由(1)得
平面
,
由(1)知,
在平面
的射影為
,即
,
,故
.
以點(diǎn)
為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立如下圖所示的空間直角坐標(biāo)系
,
![]()
易得
、
、
、
,
,
,
,
,
設(shè)平面
與平面
的法向量分別為
和
,
則
,
由
,令
,則
,
,
,
,設(shè)二面角
的大小為
,則
,所以二面角
的大小![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1) 討論
的單調(diào)性;
(2) 設(shè)
,當(dāng)
時,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
有兩個極值點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)已知
,
,
是
的三個零點(diǎn),且
.當(dāng)
時,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐
的每個頂點(diǎn)都在球
的球面上,
是面積為
的等邊三角形,
,
,且平面
平面
.
![]()
(1)確定
的位置(需要說明理由),并證明:平面
平面
.
(2)與側(cè)面
平行的平面
與棱
,
,
分別交于
,
,
,求四面體
的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線
的直角坐標(biāo)方程,并求
時直線
的普通方程;
(2)直線
和曲線
交于兩點(diǎn)
,點(diǎn)
的直角坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟(jì)負(fù)擔(dān),讓更多的孩子接受良好的教育,國家施行高中生國家助學(xué)金政策,普通高中國家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實(shí)際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號召,通過各種形式宣傳國家助學(xué)金政策.為了解某高中學(xué)校對國家助學(xué)金政策的宣傳情況,擬采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行采訪調(diào)查.
(1)若該高中學(xué)校有2000名在校學(xué)生,編號分別為0001,0002,0003,…,2000,請用系統(tǒng)抽樣的方法,設(shè)計(jì)一個從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫出必要的步驟)
(2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級共評定出3個1檔,2個2檔,1個3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫感想,求這2名同學(xué)不在同一檔的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
為正實(shí)數(shù).
(1)若不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的一套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( )
![]()
A. 2018年1月至4月的倉儲指數(shù)比2017年同期波動性更大
B. 2017年、2018年的最大倉儲指數(shù)都出現(xiàn)在4月份
C. 2018年全年倉儲指數(shù)平均值明顯低于2017年
D. 2018年各月倉儲指數(shù)的中位數(shù)與2017年各月倉儲指數(shù)中位數(shù)差異明顯
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com