已知直線l⊥平面α,直線m?平面β,有下面四個命題:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正確的命題( )
A.①② B.②④ C.①③ D.③④
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)恒等變形(解析版) 題型:選擇題
已知
,則tan
為( )
A. ![]()
B. ![]()
C. 2
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(六)(解析版) 題型:填空題
袋中有3個黑球,1個紅球.從中任取2個,取到一個黑球得0分,取到一個紅球得2分,則所得分?jǐn)?shù)ξ的數(shù)學(xué)期望E(ξ)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:解答題
已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:選擇題
已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線
-y2=1的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)a的值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:選擇題
若集合A={x|x≥0},且A∩B=B,則集合B可能是( )
A.{1,2} B.{x|x≤1}
C.{-1,0,1} D.R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:填空題
①存在α∈(0,
)使sin α+cos α=
;
②存在區(qū)間(a,b)使y=cos x為減函數(shù)且sin x<0;
③y=tan x在其定義域內(nèi)為增函數(shù);
④y=cos 2x+sin(
-x)既有最大、最小值,又是偶函數(shù);
⑤y=|sin 2x+
|的最小正周期為π.
以上命題錯誤的為________(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:解答題
已知函數(shù)f(x)=-2x+4,令Sn=f(
)+f(
)+f(
)+…+f(
)+f(1).
(1)求Sn;
(2)設(shè)bn=
(a∈R)且bn<bn+1對所有正整數(shù)n恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:選擇題
已知集合A={-1,1},B={x|mx=1},且A∪B=A,則m的值為 ( )
A.1或-1或0 B.-1
C.1或-1 D.0
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com