【題目】如圖,四棱臺
中,
底面
,平面
平面
為
的中點.
(1)證明:
;
(2)若
,且
,求二面角
的正弦值.
![]()
【答案】(1)證明見解析;(2)
.
【解析】試題分析:(1)先根據(jù)平幾知識求
,再根據(jù)面面垂直性質(zhì)定理得
平面
即得
;(2)先根據(jù)條件建立空間直角坐標系,設(shè)立各點坐標,利用解方程組得各面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角相等或互補關(guān)系確定二面角
的正弦值.
試題解析:(1)證明:連接
,
∵
為四棱臺,四邊形
四邊形
,
∴
,由
得,
,
又∵
底面
,∴四邊形
為直角梯形,可求得
,
又
為
的中點,所以
,
又∵平面
平面
,平面
平面
,
∴
平面
平面
,
∴
;
(2)解:
![]()
在
中,
,利用余弦定理可求得,
或
,由于
,所以
,從而
,知
,
如圖,以
為原點建立空間直角坐標系,
,
由于
平面
,所以平面
的法向量為
,
設(shè)平面
的法向量為
,
,
,
設(shè)
,所以
,
,
∴
,
即二面角
的正弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為4,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM∥平面A1DE,則動點M的軌跡長度為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當(dāng)
時,
,
單調(diào)遞減,且
;
當(dāng)
時,
,
單調(diào)遞增;且
,
所以
在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故
,
故
.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標方程;
(2)在曲線
上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對營銷人員有如下規(guī)定:
①年銷售額
(萬元)在8萬元以下,沒有獎金;
②年銷售額
(萬元),
時,獎金為
萬元,且
,
,且年銷售額越大,獎金越多;
③年銷售額超過64萬元,按年銷售額的10%發(fā)獎金.
(1)求獎金y關(guān)于x的函數(shù)解析式;
(2)若某營銷人員爭取獎金
(萬元),則年銷售額
(萬元)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)
時,求曲線
在
處的切線方程;
(2)當(dāng)
時,判斷
在
上的單調(diào)性,并說明理由;
(3)當(dāng)
時,求證:
,都有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
,求曲線
在點
處的切線方程;
(Ⅱ)若
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濟南新舊動能轉(zhuǎn)換先行區(qū),承載著濟南從“大明湖時代”邁向“黃河時代”的夢想,肩負著山東省新舊動能轉(zhuǎn)換先行先試的重任,是全國新舊動能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標,通過開放平臺匯聚創(chuàng)新要素,堅持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機器人制造企業(yè)有意落戶先行區(qū),對市場進行了可行性分析,如果全年固定成本共需2000(萬元),每年生產(chǎn)機器人
(百個),需另投人成本
(萬元),且
,由市場調(diào)研知,每個機器人售價6萬元,且全年生產(chǎn)的機器人當(dāng)年能全部銷售完.
(1)求年利潤
(萬元)關(guān)于年產(chǎn)量
(百個)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤超過2000(萬元)時,才選擇落戶新舊動能轉(zhuǎn)換先行區(qū).請問該企業(yè)能否落戶先行區(qū),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面六個句子中,錯誤的題號是________.
①周期函數(shù)必有最小正周期;
②若
則
,
至少有一個為
;
③
為第三象限角,則
;
④若向量
與
的夾角為銳角,則
;
⑤存在
,
,使
成立;
⑥在
中,O為
內(nèi)一點,且
,則O為
的重心.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com