【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓
上,其中A(0,1)為直角頂點(diǎn).若該三角形的面積的最大值為
,則實(shí)數(shù)a的值為_____.
【答案】3
【解析】
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為y
x+1,(k≠0),聯(lián)立方程得到B(
,
),故S
,令t
,得S
,利用均值不等式得到答案.
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為y
x+1,(k≠0)
由
消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x![]()
∵A的坐標(biāo)(0,1),∴B的坐標(biāo)為(
,k
1),即B(
,
),
因此AB![]()
,
同理可得:AC![]()
.
∴Rt△ABC的面積為S
ABAC![]()
![]()
令t
,得S
.
∵t
2,∴S△ABC
.
當(dāng)且僅當(dāng)
,即t
時(shí),△ABC的面積S有最大值為
.
解之得a=3或a
.
∵a
時(shí),t
2不符合題意,∴a=3.
故答案為:3.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①“
”是“
”的必要不充分條件
②函數(shù)
的最小值為2
③命題“
,
”的否定是“
,
”
④已知雙曲線
過點(diǎn)
,且漸近線為
,則離心率
,其中所有正確命題的編號(hào)是:_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知f(x)=x3+3ax2+bx+a2在x=-1時(shí)有極值0,求常數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=x3-6x+5,x∈R. 若關(guān)于x的方程g(x)=m有三個(gè)不同的實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長(zhǎng)為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( 。
![]()
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,
為拋物線
上不同的兩點(diǎn),且
,點(diǎn)![]()
且
于點(diǎn)
.
(1)求
的值;
(2)過
軸上一點(diǎn)
的直線
交
于
,
兩點(diǎn),
在
的準(zhǔn)線上的射影分別為
,
為
的焦點(diǎn),若
,求
中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(t為參數(shù)),點(diǎn)A(1,0),B(3,
),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系.
(1)求直線AB的極坐標(biāo)方程;
(2)求直線AB與曲線C交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=
(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn=
(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐
中,
底面
,
是邊長(zhǎng)為2的等邊三角形,且
,
,點(diǎn)
是棱
上的動(dòng)點(diǎn).
![]()
(I)求證:平面
平面
;
(Ⅱ)當(dāng)線段
最小時(shí),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,點(diǎn)
,
,
分別為橢圓的左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn),
的面積為
,且橢圓的離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
為橢圓
上一點(diǎn),直線
與橢圓
交于不同的兩點(diǎn)
,
,且
(點(diǎn)
為坐標(biāo)原點(diǎn)),求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com