欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.如圖,△ABC的頂點(diǎn)都在圓O上,點(diǎn)P在BC的延長線上,且PA與圓O切于點(diǎn)A.
(1)若∠ACB=70°,求∠BAP的度數(shù);
(2)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

分析 (1)若∠ACB=70°,證明∠ACB+∠BAP=∠ACB+∠ACP=180°,即可求∠BAP的度數(shù);
(2)證明△PAC∽△PBA,利用切割線定理,結(jié)合$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

解答 解:(1)∵PA與圓O切于點(diǎn)A,
∴∠CAP=∠ABC,
∵∠ACP=∠ABC+∠BAC,
∴∠ACP=∠PAC+∠BAC=∠BAP,
∴∠ACB+∠BAP=∠ACB+∠ACP=180°,
∵∠ACB=70°,
∴∠BAP=110°;
(2)由(1)得∠CAP=∠ABC,
∵∠APC=∠APC,
∴△PAC∽△PBA,
∴$\frac{PC}{PA}=\frac{AC}{AB}$,
∴PA=$\frac{AB•PC}{AC}$,
∴PA2=$\frac{A{B}^{2}•P{C}^{2}}{A{C}^{2}}$,
由切割線定理可得PA2=PB•PC,
∴PB•PC=$\frac{A{B}^{2}•P{C}^{2}}{A{C}^{2}}$,
∴$\frac{PC}{PB}$=$\frac{A{C}^{2}}{A{B}^{2}}$=$\frac{4}{25}$.

點(diǎn)評 本題考查切割線定理,考查三角形相似的判斷與性質(zhì)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,已知正方形ABCD的邊長為2,點(diǎn)E為AB的中點(diǎn).以A為圓心,AE為半徑,作弧交AD于點(diǎn)F.若P為劣弧$\widehat{EF}$上的動點(diǎn),則$\overrightarrow{PC}•\overrightarrow{PD}$的最小值為5-2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在菱形ABCD中,AB=2,∠BAD=60°,沿對角線BD將△ABD折起,使A,C之間的距離為$\sqrt{6}$,若P,Q分別為線段BD,CA上的動點(diǎn).

(1)求線段PQ長度的最小值;
(2)當(dāng)線段PQ長度最小時(shí),求直線PQ與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3:ρ(cosθ-2sinθ)=7距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.大學(xué)生小趙計(jì)劃利用假期進(jìn)行一次短期打工體驗(yàn),已知小趙想去某工廠打工,老板告知每天上班的時(shí)間(單位:小時(shí))和工資(單位:元),如表所示:
時(shí)間x2358912
工資y30406090120m
根據(jù)計(jì)算,小趙得知這段時(shí)間每天打工工資與每天工作時(shí)間滿足的線性回歸方程為$\stackrel{∧}{y}$=11.4x+5.9,若小趙在假期內(nèi)打5天工,工作時(shí)間(單位:小時(shí))分別為8,8,9,9,12,則這5天小趙獲得工資的方差為( 。
A.112B.240C.376D.484

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$則z=2|x|+y的取值范圍是( 。
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等比數(shù)列{an}的前4項(xiàng)和S4=5,且4a1$,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為2,公差為-a1的等差數(shù)列,其前n項(xiàng)和為Tn,求滿足Tn-1>0的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=log2(1+x)-log2(1-x),則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)也是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題正確的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若m∥n,m∥α,則n∥α
C.若α∩β=n,m∥α,m∥β,則m∥nD.若m⊥α,m⊥n,則n∥α

查看答案和解析>>

同步練習(xí)冊答案