【題目】設(shè)橢圓的兩個焦點(diǎn)分別為
,
,過
作橢圓長軸的垂線交橢圓于點(diǎn)
,若
為等腰直角三角形,則橢圓的離心率是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】試題分析:解:設(shè)點(diǎn)P在x軸上方,坐標(biāo)為(
),∵
為等腰直角三角形,∴|PF2|=|F1F2|,
,故選D.
考點(diǎn):橢圓的簡單性質(zhì)
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“
”是“對任意的正數(shù)
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“
”?“對任意的正數(shù)x,2x+
≥1”與“對任意的正數(shù)x,2x+
≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=
”時(shí),由基本不等式可得:
“對任意的正數(shù)x,2x+
≥1”一定成立,
即“a=
”?“對任意的正數(shù)x,2x+
≥1”為真命題;
而“對任意的正數(shù)x,2x+
≥1的”時(shí),可得“a≥
”
即“對任意的正數(shù)x,2x+
≥1”?“a=
”為假命題;
故“a=
”是“對任意的正數(shù)x,2x+
≥1的”充分不必要條件
故選A
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為實(shí)常數(shù)) .
(I)當(dāng)
時(shí),求函數(shù)
在
上的最大值及相應(yīng)的
值;
(II)當(dāng)
時(shí),討論方程
根的個數(shù).
(III)若
,且對任意的
,都有
,求
實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體
中,
平面
,
,
,
.
是
的中點(diǎn),
是
的中點(diǎn),點(diǎn)
在線段
上,且
.
(1)證明:
平面
;
(2)若二面角
的大小為60°,求∠BDC的大。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在
中,
分別是外心、垂心和重心,
為
邊的中點(diǎn),下列四個結(jié)論:(1)
;(2)
;(3)
;(4)
正確的個數(shù)為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,函數(shù)
的最小值為
.
(1)當(dāng)
時(shí),求
的值;
(2)求
;
(3)已知函數(shù)
為定義在上的增函數(shù),且對任意的
都滿足
,問:是否存在這樣的實(shí)數(shù)
,使不等式
對所有
恒成立,若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
和等比數(shù)列
滿足
,
,
.
(1)求
的通項(xiàng)公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據(jù)等差數(shù)列
的
,
,列出關(guān)于首項(xiàng)
、公差
的方程組,解方程組可得
與
的值,從而可得數(shù)列
的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng)
,公比
的方程組,解得
、
的值,求出數(shù)列
的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
從而
.
【題型】解答題
【結(jié)束】
18
【題目】已知命題
:實(shí)數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若
,且
為真,求實(shí)數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
和等比數(shù)列
滿足
,
,
.
(1)求
的通項(xiàng)公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據(jù)等差數(shù)列
的
,
,列出關(guān)于首項(xiàng)
、公差
的方程組,解方程組可得
與
的值,從而可得數(shù)列
的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng)
,公比
的方程組,解得
、
的值,求出數(shù)列
的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
從而
.
【題型】解答題
【結(jié)束】
18
【題目】已知命題
:實(shí)數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若
,且
為真,求實(shí)數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com