【題目】銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA,則cosA+sinC的取值范圍是 .
【答案】(
,
)
【解析】解:已知等式a=2bsinA利用正弦定理化簡得:sinA=2sinBsinA, ∵sinA≠0,
∴sinB=
,
∵B為銳角,
∴B=30°,即A+C=150°,
∴cosA+sinC=cosA+sin(150°﹣A)=cosA+
cosA+
sinA=
cosA+
sinA=
(
cosA+
sinA)=
sin(A+60°),
∵60°<A<90°,∴120°<A+60°<150°,
∴
<sin(A+60°)<
,即
<
sin(A+60°)<
,
則cosA+sinC的取值范圍是(
,
).
所以答案是:(
,
).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解余弦定理的定義(余弦定理:
;
;
).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大。
(2)解不等式f(x)≤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題12分)已知函數(shù)
.
(1)若
=0,判斷函數(shù)
的單調(diào)性;
(2)若
時(shí),
<0恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,g(x)=x3﹣x2﹣3.
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的
,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(cosα,sinα),
=(cosβ,sinβ),(0<β<α<π).
(1)若
,求證:
;
(2)設(shè)
,若
,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
, ![]()
(1)當(dāng)
時(shí),求不等式
的解集;
(2)若不等式
的解集為空集,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
有一個(gè)零點(diǎn)為4,且滿足
.
(1)求實(shí)數(shù)
和
的值;
(2)試問:是否存在這樣的定值
,使得當(dāng)
變化時(shí),曲線
在點(diǎn)
處的切線互相平行?若存在,求出
的值;若不存在,請說明理由;
(3)討論函數(shù)
在
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量
、
表示向量
;
(2)若AD⊥AB,求向量
、
夾角的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com