如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是線段EF的中點(diǎn).
![]()
(Ⅰ)求證AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大;
(Ⅲ)試在線段AC上確定一點(diǎn)P,使得PF與BC所成的角是60°.
(1)對(duì)于線面平行的證明,主要是分析借助于中位線來得到AM∥OE
(2)60º(3)P是AC的中點(diǎn)
【解析】
試題分析:解法一: (1)記AC與BD的交點(diǎn)為O,連接OE, ∵O、M分別是AC、EF的中點(diǎn), ACEF是矩形,∴四邊形AOEM是平行四邊形,
∴AM∥OE.∵
平面BDE,
平面BDE,∴AM∥平面BDE.……4分
(2)在平面AFD中過A作AS⊥DF于S,連結(jié)BS,∵AB⊥AF, AB⊥AD,
∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,
由三垂線定理得BS⊥DF.∴∠BSA是二面角A—DF—B的平面角.
在RtΔASB中,![]()
∴
∴二面角A—DF—B的大小為60º.……8分
(3)設(shè)CP=t(0≤t≤2),作PQ⊥AB于Q,則PQ∥AD,
∵PQ⊥AB,PQ⊥AF,
,∴PQ⊥平面ABF,
平面ABF,∴PQ⊥QF.在RtΔPQF中,∠FPQ=60º,PF=2PQ.
∵ΔPAQ為等腰直角三角形,∴
又∵ΔPAF為直角三
角形,∴
,∴
所以t=1或t=3(舍去),即點(diǎn)P是AC的中點(diǎn).……12分
解法二: (1)建立空間直角坐標(biāo)系.
設(shè)
,連接NE,
則點(diǎn)N、E的坐標(biāo)分別是(
、(0,0,1),
∴
, 又點(diǎn)A、M的坐標(biāo)分別是
,(![]()
∴
=(
∴
且NE與AM不共線,∴NE∥AM.又∵
平面BDE,
平面BDE,∴AM∥平面BDE.
(2)∵AF⊥AB,AB⊥AD,AF
∴AB⊥平面ADF.
∴![]()
為平面DAF的法向量.
∵
=(
·
=0,
∴
=(
·
=0得
,
,∴NE為平面BDF的法向量.
∴cos<
=
∴AB與NE的夾角是60º.即所求二面角A—DF—B的大小是60º.
(3)設(shè)P(t,t,0)(0≤t≤
)得![]()
∴
=(0,
, 0)
又∵PF和BC所成的角是60º.∴![]()
解得
或
(舍去),即點(diǎn)P是AC的中點(diǎn).
考點(diǎn):空間中線面的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)線面平行的判定定理,以及空間的法向量來求解二面角的平面角的大小,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| MN |
| BN |
| ||
| 2 |
| ||
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
| 2 |
| ME |
| FM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
| 5 |
| 6 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com