欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.如圖,CA,CB分別與圓O切于A,B兩點(diǎn),AE是直徑,OF平分∠BOE交CB的延長線于F,BD∥AC.
(1)證明:OB2=BC•BF;
(2)證明:∠DBF=∠AOB.

分析 (1)連接OC,運(yùn)用切線的性質(zhì),可得△OAC≌△OBC,結(jié)合內(nèi)角平分線的定義,可得∠FOC=90°,由直角三角形的射影定理,即可得證;
(2)由對角互補(bǔ),可得四點(diǎn)C,A,O,B共圓,延長AC至M,運(yùn)用兩直線平行的性質(zhì),即可得證.

解答 證明:(1)連接OC,由CA,CB為切線,可得CA=CB,
OA=OB,OC=OC,
即有△OAC≌△OBC,
即有∠AOC=∠BOC,
又OF平分∠BOE交CB的延長線于F,
可得∠EOF=∠BOF,
則∠FOC=∠FOB+∠BOC=∠EOF+∠AOC=90°,
在直角三角形COF中,OB為斜邊CF上的高,
由射影定理,可得OB2=BC•BF;
(2)由∠CAO=∠CBO=90°,可得
四點(diǎn)C,A,O,B共圓,延長AC至M,
即有∠MCB=∠AOB,
由BD∥AC,可得∠DBF=∠MCB,
即有∠DBF=∠AOB.

點(diǎn)評 本題考查圓的切線的性質(zhì)、四點(diǎn)共圓的判定和性質(zhì)、直角三角形的射影定理的運(yùn)用,考查推理和運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若隨機(jī)變量X的概率分布如表,則表中a的值為(  )
X1234
P0.20.30.4a
A.1B.0.1C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=2x+loga(x+1)+3恒過定點(diǎn)為( 。
A.(0,3)B.(0,4)C.$(-1,\frac{7}{2})$D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點(diǎn)為A,B為⊙O上一點(diǎn),且BC∥PO.
(I)求證:PB為⊙O的切線
(Ⅱ)若⊙O的半徑為1,PA=3,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a•}$($\overrightarrow{a}+\overrightarrow$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的正切值為(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$,且曲線f(x)在點(diǎn)(e,f(e))處的切線與直線y=e2x+e垂直(其中e為自然對數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上單調(diào),求實(shí)數(shù)m的取值范圍;
(2)設(shè)g(x)=(x+1)•f(x),求證:當(dāng)x>1時(shí),g(x)>$\frac{2(e+1){e}^{x}}{e(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是R上的奇函數(shù).
(1)求函數(shù)h(x)=xe2f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)g(x)=(λ+a)x-cosx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])是減函數(shù),且對任意實(shí)數(shù)λ都滿足g(x)≤λt-1,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C的極坐標(biāo)方程為ρ═4sin(θ-$\frac{π}{3}$),以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系xOy.
(1)求曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線C上,點(diǎn)Q的直角坐標(biāo)是(cosφ,sinφ),其中(φ∈R),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,若以極點(diǎn)為原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系,則C1的直角坐標(biāo)方程為y=x+2,;曲線C2在直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}x=2cost\\ y=2+2sint\end{array}$(參數(shù)t∈[-$\frac{π}{2}$,$\frac{π}{2}}$]),則C2的直角坐標(biāo)方程為x2+(y-2)2=4;C1被C2截得的弦長為4.

查看答案和解析>>

同步練習(xí)冊答案