【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與
軸的正半軸重合,圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)若
,
是直線
與
軸的交點,
是圓
上一動點,求
的最大值;
(Ⅱ)若直線
被圓
截得的弦長等于圓
的半徑
倍,求
的值.
【答案】(Ⅰ)
;(Ⅱ)
或
.
【解析】試題分析:(Ⅰ)首先,根據(jù)所給a的值,將圓的極坐標(biāo)方程化為普通方程,將直線的參數(shù)方程化為直角坐標(biāo)方程,然后,根據(jù)圓的性質(zhì),將所求的最值轉(zhuǎn)化為到圓心的距離;(Ⅱ)首先,得到原點普通方程,然后,結(jié)合圓的弦長公式,建立關(guān)系式求解a的值即可.
試題解析:
(Ⅰ)當(dāng)
時,圓
的極坐標(biāo)方程為
,可化為
,
化為直角坐標(biāo)方程為
,即
.
直線
的普通方程為
,與
軸的交點
的坐標(biāo)為
,
∵圓心
與點
的距離為
,
∴
的最大值為
.
(Ⅱ)由
,可化為
,
∴圓
的普通方程為
.
∵直線
被圓
截得的弦長等于圓
的半徑的
倍,
∴由垂徑定理及勾股定理得:圓心到直線
的距離為圓
半徑的一半,
∴
,解得
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)當(dāng)m=﹣1時,求A∩B,A∪B;
(2)若BA,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1棱長為1,P、Q分別是線段AD1和BD上的點,且D1P:PA=DQ:QB=5:12, ![]()
(1)求線段PQ的長度;
(2)求證PQ⊥AD;
(3)求證:PQ∥平面CDD1C1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)=
;④f(x)=x2;則屬于集合M的函數(shù)個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且
為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述,其中描述正確的是( ) ①y=f(x)是周期函數(shù);②x=π是它的一條對稱軸
③(﹣π,0)是它圖象的一個對稱中心;④當(dāng)
時,它一定取最大值
A.①②
B.①③
C.②④
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為F1有一小球A 從F1處以速度v開始沿直線運動,經(jīng)橢圓壁反射(無論經(jīng)過幾次反射速度大小始終保持不變,小球半徑忽略不計),若小球第一次回到F1時,它所用的最長時間是最短時間的5倍,則橢圓的離心率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=2x
B.y= ![]()
C.y=2 ![]()
D.y=﹣x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向量的運算常常與實數(shù)運算進行類比,下列類比推理中結(jié)論正確的是( )
A.“若ac=bc(c≠0),則a=b”類比推出“若
=
(
≠
),則
=
”
B.“在實數(shù)中有(a+b)c=ac+bc”類比推出“在向量中(
+
)
=
+
”
C.“在實數(shù)中有(ab)c=a(bc)”類比推出“在向量中(
)
=
(
)”
D.“若ab=0,則a=0或b=0”類比推出“若
=0,則
=
或
=
”
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com