科目:高中數(shù)學 來源: 題型:
試判斷下面的證明過程是否正確:
用數(shù)學歸納法證明:
![]()
證明:(1)當
時,左邊=1,右邊=1
∴當
時命題成立.
(2)假設當
時命題成立,即
![]()
則當
時,需證
![]()
由于左端等式是一個以1為首項,公差為3,項數(shù)為
的等差數(shù)列的前
項和,其和為
![]()
∴
式成立,即
時,命題成立.根據(jù)(1)(2)可知,對一切
,命題成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
試判斷下面的證明過程是否正確:
用數(shù)學歸納法證明:
![]()
證明:(1)當
時,左邊=1,右邊=1
∴當
時命題成立.
(2)假設當
時命題成立,即
![]()
則當
時,需證
![]()
由于左端等式是一個以1為首項,公差為3,項數(shù)為
的等差數(shù)列的前
項和,其和為
![]()
∴
式成立,即
時,命題成立.根據(jù)(1)(2)可知,對一切
,命題成立.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江西省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導,得![]()
取
,則
得到結論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當
時,
;
當
時,
;
猜想:當
時,
運用數(shù)學歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導,得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當
時,
;
當
時,
;
當
時,
;
…………6分
猜想:當
時,
,下面用數(shù)學歸納法證明:
由上述過程可知,
時結論成立,
假設當
時結論成立,即
,
當
時,![]()
而![]()
∴![]()
即
時結論也成立,
∴當
時,
成立。
…………11分
綜上得,當
時,
;
當
時,
;
當
時,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
用數(shù)學歸納法證明:
1+4+7+…+(3n-2)=
n(3n-1).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com