【題目】下列說(shuō)法錯(cuò)誤的是_____________.
①.如果命題“
”與命題“
或
”都是真命題,那么命題
一定是真命題.
②.命題
,則![]()
③.命題“若
,則
”的否命題是:“若
,則
”
④.特稱(chēng)命題 “
,使
”是真命題.
【答案】④
【解析】
由題意,①中,根據(jù)復(fù)合命題之間的關(guān)系進(jìn)行判斷;②中,根據(jù)全稱(chēng)命題與存在性命題的關(guān)系判定;③中,根據(jù)四種命題的關(guān)系可判定;④中,根據(jù)含由量詞的命題的定義進(jìn)行判定.
由題意,①中,如果命題“
”與命題“
或
”都是真命題,則
是假命題,
為真命題,所以是正確的;
②中,根據(jù)全稱(chēng)命題與存在性命題的關(guān)系,可知命題
的否性為
,所以是正確的;
③中,根據(jù)四種命題的概念,可知命題“若
,則
”的否命題是“若
,則
”,所以是正確的;
④中,因?yàn)榕袆e式
,所以方程
無(wú)解,所以不正確,故答案選④.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿(mǎn)足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點(diǎn)對(duì)稱(chēng),則對(duì)稱(chēng)點(diǎn)(P,Q)是函數(shù)y=f(x)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)對(duì)(P,Q)與(Q,P)看作同一個(gè)“伙伴點(diǎn)組”).則下列函數(shù)中,恰有兩個(gè)“伙伴點(diǎn)組”的函數(shù)是(填空寫(xiě)所有正確選項(xiàng)的序號(hào))
①y=
;②y=
;③y=
;④y=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA,CB分別與圓O切于A(yíng),B兩點(diǎn),AE是直徑,OF平分∠BOE交CB的延長(zhǎng)線(xiàn)于F,BD∥AC. ![]()
(1)證明:OB2=BCBF;
(2)證明:∠DBF=∠AOB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)g(x)=alnx,對(duì)任意x∈[1,e],都有g(shù)(x)≥﹣x2+(a+2)x恒成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C,D為平面四邊形ABCD的四個(gè)內(nèi)角. ![]()
(1)證明:tan
=
;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan
+tan
+tan
+tan
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.
(1)求拋物線(xiàn)方程;
(2)直線(xiàn)l過(guò)定點(diǎn)B(-1,0)與該拋物線(xiàn)相交所得弦長(zhǎng)為8,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C:y2=2x﹣4.
(1)求曲線(xiàn)C在點(diǎn)A(3,
)處的切線(xiàn)方程;
(2)過(guò)原點(diǎn)O作直線(xiàn)l與曲線(xiàn)C交于A(yíng),B兩不同點(diǎn),求線(xiàn)段AB的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列{an}中的項(xiàng)都滿(mǎn)足a2n﹣1=a2n<a2n+1(n∈N*),則稱(chēng){an}為“階梯數(shù)列”.
(1)設(shè)數(shù)列{bn}是“階梯數(shù)列”,且b1=1,b2n+1=9b2n﹣1(n∈N*),求b2016;
(2)設(shè)數(shù)列{cn}是“階梯數(shù)列”,其前n項(xiàng)和為Sn , 求證:{Sn}中存在連續(xù)三項(xiàng)成等差數(shù)列,但不存在連續(xù)四項(xiàng)成等差數(shù)列;
(3)設(shè)數(shù)列{dn}是“階梯數(shù)列”,且d1=1,d2n+1=d2n﹣1+2(n∈N*),記數(shù)列{
}的前n項(xiàng)和為T(mén)n , 問(wèn)是否存在實(shí)數(shù)t,使得(t﹣Tn)(t+
)<0對(duì)任意的n∈N*恒成立?若存在,請(qǐng)求出實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時(shí),若f(x)>0對(duì)任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com