【題目】(本小題滿(mǎn)分12分)△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知a=3,cos A=
,B=A+
.
(1)求b的值;
(2)求△ABC的面積.
【答案】(1)
. (2)
【解析】
試題分析:(1) 已知兩角及對(duì)邊求另一對(duì)邊,應(yīng)該利用正弦定理,在△ABC中,sin A=
,sin B=sin
=cos A=
,由正弦定理可得,b=![]()
(2)三角形面積公式選用S=
absin C,則需求出sin C,sin C=sin[π-(A+B)] =sin(A+B) =sin Acos B+cos Asin B=
×
+
×
=
.因此△ABC的面積S=
absin C=
×3×
×
=
.
試題解析:(1)在△ABC中,
由題意知,sin A=![]()
又因?yàn)锽=A+
,
所以sin B=sin
=cos A=![]()
由正弦定理可得,b=
6分
(2)由B=A+
得cos B=cos
=-sin A=-
.
由A+B+C=π,得C=π-(A+B),
所以sin C=sin[π-(A+B)]
=sin(A+B)
=sin Acos B+cos Asin B
=
×
+
×![]()
=
.
因此△ABC的面積S=
absin C=
×3×
×
=
. 12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<
)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且|OQ|=2,|OP|=
,|PQ|=
. ![]()
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)圖象向右平移1個(gè)單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時(shí),求函數(shù)h(x)=f(x)g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, i=184, =720.
(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線(xiàn)性回歸方程
;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線(xiàn)性回歸方程
中,
,其中
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面向量
=(1,x),
=(2x+3,﹣x)(x∈R).
(1)若
∥
,求|
﹣
|
(2)若
與
夾角為銳角,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求直線(xiàn)l:ax-y+b=0經(jīng)過(guò)兩直線(xiàn)l1:2x-2y-3=0和l2:3x-5y+1=0交點(diǎn)的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD﹣A1B1C1D1是棱長(zhǎng)為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點(diǎn),P是上底面的棱AD上的一點(diǎn),AP=
,過(guò)P、M、N的平面交上底面于PQ,Q在CD上,則PQ= . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,圓心為
,定點(diǎn)
,
為圓
上一點(diǎn),線(xiàn)段
上一點(diǎn)
滿(mǎn)足
,直線(xiàn)
上一點(diǎn)
,滿(mǎn)足
.
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)
為坐標(biāo)原點(diǎn),
是以
為直徑的圓,直線(xiàn)
與
相切,并與軌跡
交于不同的兩點(diǎn)
.當(dāng)
且滿(mǎn)足
時(shí),求
面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如圖所示的對(duì)應(yīng): ![]()
其中構(gòu)成從A到B的映射的個(gè)數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com