【題目】已知命題
方程
有兩個不相等的負(fù)實(shí)根,
命題
不等式
的解集為
,
(1)若
為真命題,求
的取值范圍.
(2)若
為真命題,
為假命題,求
的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a.
(1)已知直線l是曲線y=f(x)在點(diǎn)(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三個不同實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求函數(shù)
的極值;
(Ⅱ)討論
的單調(diào)性;
(Ⅲ)若對任意的
,恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且滿足a(
sinC+cosC)=b+c.
(I) 求角A的大;
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
,點(diǎn)
,
分別是橢圓
的左頂點(diǎn)和左焦點(diǎn),點(diǎn)
是
:
上的動點(diǎn),若
是常數(shù),則橢圓
的離心率為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表是一個由n2個正數(shù)組成的數(shù)表,用aij表示第i行第j個數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48. ![]()
(1)求an1和a4n;
(2)設(shè)bn=
+(﹣1)na
(n∈N+),求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)競賽中,30名參賽學(xué)生的成績(百分制)的莖葉圖如圖所示:若將參賽學(xué)生按成績由高到低編為1﹣30號,再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績在[77,90]內(nèi)的學(xué)生人數(shù)為( ) ![]()
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x+
+1(a∈R).
(1)討論f(x)的單調(diào)性與極值點(diǎn)的個數(shù);
(2)當(dāng)a=0時,關(guān)于x的方程f(x)=m(m∈R)有2個不同的實(shí)數(shù)根x1 , x2 , 證明:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com