【題目】一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).
![]()
![]()
下列結(jié)論中正確的個(gè)數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為
=
a3.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】B
【解析】取A1B1的中點(diǎn)D,連結(jié)DM、DN.
由于M、N分別是所在棱的中點(diǎn),
所以可得DN∥A1C1,DN平面A1AC1C,A1C1平面A1AC1C,所以DN∥平面A1AC1C.
同理可證DM∥平面A1AC1C.
又∵DM∩DN=D,
所以平面DMN∥平面A1AC1C,
所以直線MN與A1C 相交不成立,①錯(cuò)誤;
由三視圖可得A1C1⊥平面BCC1B1.
所以DN⊥平面BCC1B1,
所以DN⊥BC,
又易知DM⊥BC,
所以BC⊥平面DMN,
所以BC⊥MN,②正確;
由①中,平面DMN∥平面A1AC1C,
可得:MN∥平面ACC1A1,③正確;
因?yàn)?/span>
a3,所以④正確.
綜上,②③④正確.
故選:B
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,D是BC邊的中點(diǎn),AE⊥AD,AE交CB的延長(zhǎng)線于E,則下面結(jié)論中正確的是( 。![]()
A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為
(θ為參數(shù)),直線l的參數(shù)方程為
(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是公差不為零的等差數(shù)列,滿足
數(shù)列
的通項(xiàng)公式為![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)將數(shù)列
,
中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列
,請(qǐng)直接寫出數(shù)列
的通項(xiàng)公式;
(3)記
,是否存在正整數(shù)
,使得
成等差數(shù)列?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=2
sin
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,
平面
,
,
,
,
,
,
,
是
的中點(diǎn).![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量
(噸)與相應(yīng)的生產(chǎn)能耗
(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù),
![]()
(1)求
,
,
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)已知該廠技動(dòng)前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
已知
,
.
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長(zhǎng)12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分),以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界線符合函數(shù)y=x+
(x>0)模型,園區(qū)服務(wù)中心P在x軸正半軸上,PO=
百米. ![]()
(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長(zhǎng)廊OM,求OM的最短長(zhǎng)度;
(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道PQ最短.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com