已知函數(shù)
的極大值為正數(shù),極小值為負數(shù),則
的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年江蘇省南通市教研室高考數(shù)學(xué)全真模擬試卷(一)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調(diào)遞增!
在
最大值為
。
綜上,當
時,即
時,
在區(qū)間
上的最大值為2;
當
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
,函數(shù)![]()
(1)當
時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中
,那么當
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數(shù)
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設(shè)
,![]()
對
求導(dǎo),得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數(shù)
的取值范圍是(![]()
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標高二上學(xué)期數(shù)學(xué)單元測試4 題型:解答題
|
分別為A1B1、BC的中點.
(I)試求
的值,使
;
(II)設(shè)AC1的中點為P,在(I)的條件下,求證:NP⊥平面AC1M.
(文)已知函數(shù)
的極大值
為7;當x=3時,f(x)有極小值.
(I)求函數(shù)f(x)的解析式;
(II)求函數(shù)f(x)在點P(1,f(1))處的切線方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com