【題目】如圖,扇形的半徑為r cm,周長為20cm,問扇形的圓心角α等于多少弧度時,這個扇形的面積最大,并求出扇形面積的最大值. ![]()
【答案】解:設(shè)扇形的半徑為r,弧長為l,則:l+2r=20,即l=20﹣2r(0<r<10). 扇形的面積S=
lr,將上式代入,得:S=
(20﹣2r)r=﹣r2+10r=﹣(r﹣5)2+25,
所以:當(dāng)且僅當(dāng)r=5時,S有最大值25,
此時:l=20﹣2×5=10,α=
=2rad.
所以:當(dāng)α=2rad時,扇形的面積取最大值,最大值為25cm2
【解析】設(shè)扇形的半徑為r,弧長為l,利用周長關(guān)系,表示出扇形的面積,利用二次函數(shù)求出面積的最大值,以及圓心角的大小.
【考點(diǎn)精析】本題主要考查了扇形面積公式的相關(guān)知識點(diǎn),需要掌握若扇形的圓心角為
,半徑為
,弧長為
,周長為
,面積為
,則
,
,
才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】身穿紅、黃兩種顏色衣服的各有兩人,身穿藍(lán)顏色衣服的有一人,現(xiàn)將這五人排成一行,要求穿相同顏色衣服的人不能相鄰,則不同的排法共有( )
A. 24種 B. 28種 C. 36種 D. 48種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下說法:①不共面的四點(diǎn)中,任意三點(diǎn)不共線;
②有三個不同公共點(diǎn)的兩個平面重合;
③沒有公共點(diǎn)的兩條直線是異面直線;
④分別和兩條異面直線都相交的兩條直線異面;
⑤一條直線和兩條異面直線都相交,則它們可以確定兩個平面.
其中正確結(jié)論的序號是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{xn}滿足x1=1,x2=λ,并且
=λ
(λ為非零常數(shù),n=2,3,4,…). (Ⅰ)若x1 , x3 , x5成等比數(shù)列,求λ的值;
(Ⅱ)設(shè)0<λ<1,常數(shù)k∈N* , 證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件求雙曲線的標(biāo)準(zhǔn)方程:
(1)經(jīng)過點(diǎn)(
,3),且一條漸近線方程為4x+3y=0.
(2)P(0,6)與兩個焦點(diǎn)的連線互相垂直,與兩個頂點(diǎn)連線的夾角為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2015高考山東文數(shù)】某中學(xué)調(diào)查了某班全部
名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán) | 未參加書法社團(tuán) | |
參加演講社團(tuán) |
|
|
未參加演講社團(tuán) |
|
|
(1)從該班隨機(jī)選
名同學(xué),求該同學(xué)至少參加上述一個社團(tuán)的概率;
(2)在既參加書法社團(tuán)又參加演講社團(tuán)的
名同學(xué)中,有5名男同學(xué)![]()
名女同學(xué)
現(xiàn)從這
名男同學(xué)和
名女同學(xué)中各隨機(jī)選
人,求
被選中且
未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考山東文數(shù)】某兒童樂園在“六一”兒童節(jié)推出了一項(xiàng)趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若
,則獎勵玩具一個;
②若
,則獎勵水杯一個; ③其余情況獎勵飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動.
(I)求小亮獲得玩具的概率;
(II)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體是由一個直平行六面體被平面
所截后得到的,其中
,
,
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù),
).
(Ⅰ)把曲線
的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線
的形狀;
(Ⅱ)若直線
經(jīng)過點(diǎn)
,求直線
被曲線
截得的線段
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com