欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知x,y∈R,i為虛數(shù)單位,且yi-x=-1+i,則(1-i)x+y的值為( 。
A.2B.-2iC.-4D.2i

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:∵yi-x=-1+i,
∴$\left\{\begin{array}{l}{-x=-1}\\{y=1}\end{array}\right.$,解得x=1,y=1.
則(1-i)x+y=(1-i)2=-2i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-ax(x+2),x>0}\end{array}\right.$是一個(gè)奇函數(shù),滿足f(2t+3)<f(4-t),則a=1,t的取值范圍是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在三行三列的方陣$(\begin{array}{l}{a_{11}}{a_{12}}{a_{13}}\\{a_{21}}{a_{22}}{a_{23}}\\{a_{31}}{a_{32}}{a_{33}}\end{array})$中有9個(gè)數(shù)aij(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則三個(gè)數(shù)中任兩個(gè)不同行不同列的概率是$\frac{1}{14}$.(結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列{an}是公差不為零的等差數(shù)列,a5=6.?dāng)?shù)列{bn}滿足:b1=3,bn+1=b1b2b3…bn+1.
(Ⅰ)當(dāng)n≥2時(shí),求證:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn;
(Ⅱ)當(dāng)a3>1且a3∈N*時(shí),a3,a5,ak1,ak2,…,akn,…為等比數(shù)列.(i)求a3;(ii)當(dāng)a3取最小值時(shí),求證:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線r:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左頂點(diǎn)為C,A為雙曲線第一象限上的點(diǎn),直線OA交雙曲線于另一點(diǎn)B,雙曲線左焦點(diǎn)為F,連結(jié)AF交BC延長(zhǎng)線于D點(diǎn).若$\overrightarrow{DB}$=3$\overrightarrow{DC}$,則雙曲線r的離心率等于( 。
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x2-3)=lg$\frac{{x}^{2}}{{x}^{2}-4}$,則 f(x)的定義域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4$\sqrt{2}$y的焦點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)直線x=2與橢圓交于P,Q兩點(diǎn),P點(diǎn)位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動(dòng)點(diǎn).
(i)若直線AB的斜率為$\frac{1}{2}$,求四邊形APBQ面積的最大值;
(ii)當(dāng)點(diǎn)A,B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知等差數(shù)列{an}滿足a2+a4+a2012+a2014=8,且Sn是該數(shù)列的前n和,則S2015=4030.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知x∈(-2,3),則函數(shù)f(x)=-x2+2x的單調(diào)增區(qū)間是(-2,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案