| A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
分析 以A為圓心,1為半徑的圓的方程為(x+1)2+y2=1;以B為圓心,4為半徑的圓的方程為(x-3)2+y2=16,圓心距為4,大于半徑的差,小于半徑的和,即兩圓相交,可得結(jié)論.
解答 解:以A為圓心,1為半徑的圓的方程為(x+1)2+y2=1;
以B為圓心,4為半徑的圓的方程為(x-3)2+y2=16,
圓心距為4,大于半徑的差,小于半徑的和,即兩圓相交,
∴與A距離為1且與B距離為4的點(diǎn)有2個(gè),
故選B.
點(diǎn)評(píng) 本題考查圓與圓的位置關(guān)系,考查學(xué)生轉(zhuǎn)化問(wèn)題的能力,正確轉(zhuǎn)化是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{5}{6}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 35 | B. | 70 | C. | 210 | D. | 105 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {x|1≤x≤2} | B. | {x|1<x≤2} | C. | {x|1≤x<2} | D. | {x|0≤x<2} |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com