【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。
![]()
若將運動員按成績由好到差編為1—35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間
上的運動員人數(shù)為
A.6B.5C.4D.3
【答案】D
【解析】
根據(jù)系統(tǒng)抽樣方法將運動員平均分組,得到每組成績及排序;分別討論取序號為
之間和
之間的運動員時滿足題意的運動員人數(shù),從而得到結(jié)果.
將
名運動員平均分為
組,可得每組成績?nèi)缦拢?/span>
第一組130,130,133,134,135,136,136;第二組138,138,138,139,141,141,141;
第三組142,142,142,143,143,144,144;第四組145,145,145,146,146,147,148;第五組150,151,152,152,153,153,153
若每組取排序第
、
、
或
位的運動員,則成績在
的為第三組、第四組和第五組的運動員,共有
人
若每組取排序在第
、
或
位的運動員,則成績在
的為第二組、第三組和第四組的運動員,共有
人
綜上所述:成績在
的恰好為
人
本題正確選項:![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是偶函數(shù),
.
(1)求
的值,并判斷函數(shù)
在
上的單調(diào)性,說明理由;
(2)設(shè)
,若函數(shù)
與
的圖像有且僅有一個交點,求實數(shù)
的取值范圍;
(3)定義在
上的一個函數(shù)
,如果存在一個常數(shù)
,使得式子
對一切大于1的自然數(shù)
都成立,則稱函數(shù)
為“
上的
函數(shù)”(其中,
).試判斷函數(shù)
是否為“
上的
函數(shù)”,若是,則求出
的最小值;若不是,則說明理由.(注:
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某足球俱樂部對“一線隊引援”和“青訓(xùn)”投入分別規(guī)劃如下:2018年,該俱樂部在“一線隊引援”投入資金為16000萬元,“青訓(xùn)”投入資金為1000萬元.計劃每年“一線隊引援”投入比上一年減少一半,“青訓(xùn)”投入比上一年增加一倍.
(1)請問哪一年該俱樂部“一線隊引援”和“青訓(xùn)”投入總和最少?
(2)從2018年起(包括2018年)該俱樂部從哪一年開始“一線隊引援”和“青訓(xùn)”總投入之和不低于62000萬元?(總投入是指各年投入之和)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修
;坐標系與參數(shù)方程
在直角坐標系
中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知某圓的極坐標方程為:
.
(Ⅰ)將極坐標方程化為普通方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體
中,
,
分別為棱
、
的中點,
為棱
上的一點,且
,設(shè)點
為
的中點,則點
到平面
的距離為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標準分別是500元/分鐘和200元分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元
A.72B.80C.84D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。
![]()
若將運動員按成績由好到差編為1—35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間
上的運動員人數(shù)為
A.6B.5C.4D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且![]()
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱錐P-ABCD的體積為
,求該四棱錐的側(cè)面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com