【題目】設(shè)函數(shù)
,函數(shù)
.
(1)求函數(shù)
的值域;
(2)若對于任意的
,總存在
,使得
成立,求實數(shù)
的取值范圍.
【答案】(1)
;(2)
.
【解析】試題分析:
(1)根據(jù)
和
三種情況分別求出
的取值范圍,最后可得函數(shù)的值域為
。(2)由(1)知,函數(shù)
的值域
。由函數(shù)
上單調(diào)遞增,可得函數(shù)
的值域
,“對于任意的
,總存在
,使得
成立”等價于
,并由此得到
,解得
即為所求。
試題解析:
(1)①當(dāng)
時,
,則函數(shù)
在(0,1)上單調(diào)遞增,在
上單調(diào)遞減,所以
。
②當(dāng)
時,
;
③當(dāng)
時,
,則函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,所以
。
綜上可得
。
所以函數(shù)
的值域為
。
(2)由(1)知,函數(shù)
的值域![]()
又函數(shù)
上單調(diào)遞增,
∴
,即
,
∴函數(shù)
的值域
,
由題意得“對于任意的
,總存在
,使得
成立”等價于
,
∴
,
解得
.
∴實數(shù)
的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
,
分別是其左、右焦點,以線段
為直徑的圓與橢圓
有且僅有兩個交點.
(1)求橢圓
的方程;
(2)設(shè)過點
且不與坐標(biāo)軸垂直的直線
交橢圓于
兩點,線段
的垂直平分線與
軸交于點
,點
橫坐標(biāo)的取值范圍是
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,惠州市某中學(xué)在此期間開展了一系列的讀書教育活動。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”.
![]()
![]()
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關(guān)?
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“讀書迷”的人數(shù)為
,若每次抽取的結(jié)果是相互獨立的,求
的分布列、數(shù)學(xué)期望
和方差
.
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“累積凈化量
”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)
《空氣凈化器》國家標(biāo)準,對空氣凈化器的累計凈化量
有如下等級劃分:
累積凈化量(克) |
|
|
| 12以上 |
等級 |
|
|
|
|
為了了解一批空氣凈化器(共5000臺)的質(zhì)量,隨機抽取
臺機器作為樣本進行估計,已知這
臺機器的累積凈化量都分布在區(qū)間
中,按照
、
、
、
、
均勻分組,其中累積凈化量在
的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
![]()
(1)求
的值及頻率分布直方圖中
的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為
的空氣凈化器有多少臺?
(3)從累積凈化量在
的樣本中隨機抽取2臺,求恰好有1臺等級為
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的
店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
|
|
(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件
:“至多有1位采用分6期付款“的概率
;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量
,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
![]()
(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否有
的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
附: ![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,
平面
,底面
為直角梯形,
,
,
,且
為線段
上的一動點.
![]()
(Ⅰ)若
為線段
的中點,求證:
平面
;
(Ⅱ)當(dāng)直線
與平面
所成角小于
,求
長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)已往經(jīng)驗,潛水員下潛的平均速度為
(米/單位時間),每單位時間的用氧量為
(升),在水底作業(yè)10個單位時間,每單位時間用氧量為
(升),返回水面的平均速度為
(米/單位時間),每單位時間用氧量為
(升),記該潛水員在此次考察活動中的總用氧量為
(升).
(1)求
關(guān)于
的函數(shù)關(guān)系式;
(2)若
,求當(dāng)下潛速度
取什么值時,總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點
為極點,
軸的非負半軸為極軸建立極坐標(biāo)系.已知點
的極坐標(biāo)為
,曲線
的參數(shù)方程為
為參數(shù)).
(1)直線
過
且與曲線
相切,求直線
的極坐標(biāo)方程;
(2)點
與點
關(guān)于
軸對稱,求曲線
上的點到點
的距離的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com