分析 (1)根據(jù)平行四邊形的法則結(jié)合向量的基本定理即可用用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{OC}$,$\overrightarrow{DC}$.
(2)根據(jù)向量關(guān)系的條件建立方程關(guān)系,求實(shí)數(shù)λ的值.
解答 解:(1)由題意知A是BC的中點(diǎn),且$\overrightarrow{OD}$=$\frac{2}{3}$$\overrightarrow{OB}$,
由平行四邊形法則得$\overrightarrow{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{OA}$,![]()
則$\overrightarrow{OC}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$=2$\overrightarrow{a}$-$\overrightarrow$,
則$\overrightarrow{DC}$=$\overrightarrow{OC}$-$\overrightarrow{OD}$=2$\overrightarrow{a}$-$\overrightarrow$-$\frac{2}{3}$$\overrightarrow$=2$\overrightarrow{a}$-$\frac{5}{3}$$\overrightarrow$;
(2)由圖知$\overrightarrow{EC}$∥$\overrightarrow{DC}$,
∵$\overrightarrow{EC}$=$\overrightarrow{OC}$-$\overrightarrow{OE}$=2$\overrightarrow{a}$-$\overrightarrow$-λ$\overrightarrow{a}$=(2-λ)$\overrightarrow{a}$-$\overrightarrow$,
$\overrightarrow{DC}$=2$\overrightarrow{a}$-$\frac{5}{3}$$\overrightarrow$,
∴$\frac{2-λ}{2}$=$\frac{-1}{-\frac{5}{3}}$,解得λ=$\frac{4}{5}$.
點(diǎn)評(píng) 本題主要考查向量的基本定理的應(yīng)用,根據(jù)向量平行四邊形法則和向量共線的條件是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 12 | C. | 16 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com